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1 January 9, 2017

1.1 Circuits, Currents, and Voltages

The concept of electric charge is the basis for describing all electrical phenomenon.
Charge exists in discrete quantities at integer multiples of 6.022× 10−19 Coulombs.
We note that this is the charge of one electron. An electric circuit is an intercon-
nection of circuit elements connected in closed paths by conductors. The following
are common components of circuits:

1. A voltage source is denoted by a circle encompassing a plus-minus sign. It
is the supplier of energy.

2. A resistor is denoted by a zigzag line.

3. An inductor is denoted by a coil of wire. An inductor is used to store energy
in the magnetic field.

4. A capacitor is denoted by a pair of plates. A capacitor is used to store energy
in the electric field.

5. A connection point is denoted by a dot where the circuit elements meet.

6. A conductor is denoted by lines. These are most commonly wires.

Two fundamentally important electrical quantities are current and voltage. Elec-
tric current is the rate of flow of electric charge, and is given by

i(t) =
dq(t)

dt
,

where i(t) denotes the current in Amperes (A), q(t) denotes the charge in Coulombs
(C), and t denotes the time in seconds (s). That is, 1 A = 1 C/s. Given i(t), one
can also find the total charge q(t) by solving the integral

q(t) =

∫ t

t0

i(t)dt+ q(t0).

We normally assign reference directions for current, each shown in a circuit dia-
gram as an arrow in the indicated direction. We note that we can choose reference
directions arbitrarily. For instance, it the current flow is actually in the opposite
direction, then the value of i is simply opposite in sign.

We have direct current (DC) and alternating current (AC). In a graph of
current versus time, a direct current is a constant value, whereas an alternating
current takes a form similar to a sine wave. DC is used in energy sources such
as batteries, while AC is used for house voltage. We make use of some common
notation in our discussion of current. Around a circuit element A, the current flows
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in direction iA in an arbitrary direction. Around a circuit element A in between
nodes a and b, the current flows in direction iab (from node a to node b), or in
direction iba = −iab.

Voltage is the energy transferred to a circuit element per unit of charge flowing
through it, and is given by

V (t) =
dW (t)

dq(t)
,

where V (t) denotes the voltage in Volts (V ), W (t) denotes energy in Joules (J),
and q(t) denotes charge. That is, 1 V = 1 J/C. Voltages are assigned polarities to
indicate the direction of energy flow. A diagram consisting of a “−”, followed by a
circuit element A, followed by a “+” with i in the opposite direction indicates that
energy is absorbed by A. When i flows in the same direction from left to right, then
energy is supplied by A.

For analysis purposes, we assign arbitrary reference polarities to each circuit
element, with the “−” and “+” in arbitrary positions on either side of the circuit
element. If polarity is opposite, the value of V is then simply of opposite sign. We
make use of some common notation in our discussion of voltage. Around a circuit
element A, the voltage denoted by VA with the positive and negative terminals on
either side in an arbitrary order. Around a circuit element A in between nodes a and
b, the voltage Vab always has the first subscript positioned on the positive terminal.
Thus, Vba = −Vab has the positive terminal at node b as opposed to node a.

2 January 11, 2017

2.1 Ideal Basic Circuit Elements

Here, we will talk about conductors sources, and resistors. Later, we will bring in
inductors and capacitors. All circuit elements are characterized by their voltage-
current relationship.

Conductors are described by a blank rectangle with appropriately labelled
current and voltage. It can also be expressed as a single line with the appropriately
labelled current and voltage, with the additional note that V = 0. From this, we can
define a conductor short circuit, which is between two points “shorted” together.
The absence of a conductor between circuit elements is an open circuit

Sources can be categorized as independent voltage sources, dependent voltage
sources, independent current sources, and dependent current sources.
Independent voltage sources are represented as independent voltage sources.
Symbolically, they are represented with a current and a numerical value associated
with voltage around a circle with + and −. A DC source has a constant voltage value
(30 V for instance), whereas an AC source has a variable voltage (100 sin(120πt) for
instance). We note the following properties for voltage sources:

• Voltage is specified explicitly. It is not dependent on any external factors.
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• Voltage is unchanged by whatever it is connected to. For instance, voltage is
independent of the current through it.

Dependent voltage sources have the same properties as independent sources,
but the value of the voltage depends on either a voltage or a current elsewhere in
the circuit. VCVS (voltage-controlled voltage source) are represented as a diamond
shape with + and −. The voltage is written as µVx where µ is the constant, and Vx
is the controlling voltage. CCVS (current-controlled voltage source) on the other
hand, are represented with the same shape, but with the current µix, where ix is
the controlling current. These can both be DC or AC as well. We note that in these
cases, Vx and ix are specified elsewhere in the circuit.
Independent current sources are represented with appropriately labelled voltage
around a circle with an arrow pointing in one direction along a conductor. Its current
could be labelled for instance, as 10 A, or 100 cos(120πt). We note the following
properties for current sources:

• Current is specified explicitly. That is, it is not dependent on external factors.

• Current is unchanged by whatever it is connected to. For instance, current is
independent of the voltage across it.

Dependent current sources have the same properties as their independent coun-
terparts, except their current depends on a voltage or current elsewhere. VCCS
(voltage-controlled current source)is represented by a diamond shape with an ar-
row pointing towards the direction of the conductor. It is labelled as µVx, where µ
is a constant, and Vx is the controlling voltage. CCCS (current-controlled current
source) is represented with the same shape, but with current µix, where ix is the
controlling current.

Resistors are represented with a zigzag within the conductor labelled R, with
appropriately labelled current and voltage. Resistance is measured in Ohms (Ω). R
is a constant. We note the property that voltage and current are related by Ohm’s
Law,

V = iR.

It is important to note that the direction of i and the polarity of V , are defined as
shown for Ohm’s Law. That is, the resistor is always absorbing energy. If we plot
V on the y axis with i on the x axis, then the slope is equal to R. This results as
a consequence of Ohm’s Law. If we had instead labelled the resistor with current
flowing from left to right, with voltage being − to +, then Ohm’s Law states that
V = −iR.
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3 January 13, 2017

3.1 Ideal Basic Circuit Elements Cont’d

Conductance is related by Ohm’s Law. Since V = iR, this can be rearranged so
that

i =

(
1

R

)
V,

where conductance G =
(

1
R

)
. The SI units of conductance is Siemens ( Ω−1).

Remark. The unit of conductance was once mho (f)!

3.2 Power and Energy

Power is the product of voltage and current. That is,

P = V i,

which we may also express as

P =
dw

dq
× dq

dt
=

dW

dt
,

where P is the power in Watts (W ), W is the energy in Joules, q is the charge in
Coulombs, and t is the time in seconds. Thus, power is the rate of energy transfer.

We define power in terms of the passive reference convention. In this con-
vention, current reference direction is the same direction as a voltage drop (from
+ to −). This implies that the circuit element absorbs power. For this scenario,
P = V i. If either current reference direction or voltage reference polarity is reversed,
then we must use P = −V i, which is the active reference convention. This is
the case when current reference direction is in the direction of a voltage rise from −
to +.

Example. Find the power in the circuit element given that the reference direction
of i corresponds to the voltage rise from − to +. Given that i = 10A and V = 12V ,
and then for i = −10A and V = 60V .

We note that in either case, this corresponds to an active reference convention.
Thus, we use the formula P = −V i. In the first case, substituting values gives
P = −120W . In the second case, we obtain 600W .

Our physical interpretation of the sign of P is therefore that the circuit element
absorbs power when P > 0, and the circuit element delivers power when P < 0.
That is, in a circuit, depending on where + and − are placed with regards to each
circuit element, since the current flows in one direction, we can use the formulas
where P = V i and P = −V i to determine whether circuit element is delivering or
absorbing energy.
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In a resistor, we can apply our formulas to obtain an expression for power. By
passive reference convention, we have P = V i and by Ohm’s Law, we have V = iR.
Substituting this expression of V , we obtain

P = (iR)i = i2R.

We note that this is always positive, since a resistor is always absorbing power.
Energy can be determined by integrating the expression of power with respect

to time. Since P = dW
dt , we get

W =

∫ t2

t1

P (t)dt+W (t1).

Power companies measure energy to determine our monthly bills. The cost is deter-
mined by how much power is used over time.

Example. Suppose we are given a circuit with i(t) = 2e−tA flowing in the voltage
direction from + to −, where V (t) = 10V . Compute the power, compute energy
from t = 0→∞, and then determine whether energy is absorbed or delivered.

We recall that P = V i. Therefore, P (t) = (10V )(2e−tA) = 20e−tW . To deter-
mine the energy consumed, we make use of the expression for energy. We obtain

W =

∫ ∞
0

P (t)dt

=

∫ ∞
0

20e−tdt

= −20e−t
∣∣∣∞
0

= 0− (−20)

= 20J

Lastly, we note that W is positive, so the circuit element is absorbing energy.

4 January 16, 2017

4.1 Power and Energy Cont’d

In a circuit, depending on where + and − are placed with regards to each circuit
element, since the current flows in one direction, we can use the formulas where
V = −iR, P = V i and P = −V i to determine whether circuit element is delivering
or absorbing energy. Suppose for instance that we know our power source to be
at 100V and the resistor in the circuit to be at 10Ω. Then V = −iR, so i = −V

R .
Substituting these values, we get i = −100V

10Ω = −10A. In the source, we use passive
reference convention to note that P = V i = (100V )(−10A) = −1000W delivered,
while in the resistor, P = −V i = −(100V )(−10A) = 1000W consumed.
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Example. Assume that energy cost is $0.12 per kilowatt-hour (kWh). The electric
bill for 30 days is $60.00, with the power being constant over this time. Determine
the power in watts. Given that voltage is 120V , determine the current. Lastly,
determine how much energy is saved (in percent) by removing 60W .

First, we note that the energy consumed over the 30 days is

W = $60.00/$0.12 = 500kWh.

Since power is constant over this time, it implies that on a power vs time graph,
the use of power over the 30 days is constant. Thus, since power is the slope on an
energy vs time graph, we have W (t) =

∫ t
0 Pdt = Pt. Rearranging for power gives

P =
W

t

=
500kWh

30 days

=
500000Wh

30× 24h

= 694.4W

Secondly, we want to determine the current through the circuit. Assuming that the
house is absorbing energy, we have P = V i, so

i =
P

V

=
694.4W

120V
= 5.787A

Lastly, if we reduce power consumption by 60W , this means we now save 60/694.4∗
100% = 8.64%, where 8.64% of $60.00 = $5.18.

Example. Consider the simple circuit with an independent voltage source of 15V
and an independent current source of 2A. Furthermore, a current of 2A passes
through the circuit from negative to positive on the voltage source and in the same
direction as the current source. Determine the power in each source, and determine
if the circuit element is absorbing or delivering power.

For the independent current element, we note that P = V i, so P2A = (15V )(2A) =
30W . For the independent voltage source, P = −V i since the current is traveling
in the active reference convention, so P15V = −(15V )(2A) = −30W . We note the
energy balance that results since −30W + 30W = 0.
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4.2 Kirchhoff’s Laws

So far, we have reviewed fundamental electrical quantities of V, i, P , and W . We
have also considered basic circuit elements, such as resistors and sources, each with
their own unique V − i relationship. Kirchhoff’s laws can now be used to define how
V and i are distributed in a circuit.

Kirchhoff’s Current Law (KCL) states that the algebraic sum of all currents
at a node must be zero. We choose a consistent way to distinguish between incom-
ing and outgoing currents at a node. To understand Kirchhoff’s Current Law, we
can consider a fluid-flow analogy, whereby an incoming rate of 6 litres per minute
combined with an incoming rate of 3 litres per minute results in an outgoing rate
of 9 litres per minute. Analogously, we can consider a node in a circuit joining two
or more circuit elements with incoming currents i1 and i2, along with an outgoing
current i3. Thus, incoming currents add and outgoing currents subtract. In our
example, the sum of the currents is i1 + i2 − i3 = 0. Therefore, i3 = i1 + i2.

Remark. Note that two connection points joined by a conductor is equivalent to a
single node. We can collapse this into a single connection point.

Example. Determine the outgoing current if there are incoming currents of −5A,
3A, and 6A.

According to KCL, at the node, we have the sum of the currents equal to zero.
Therefore, −5A+ 6A+ 3A− i1 = 0. Rearranging this, we find that i1 = 4.

Series circuits are a very common and important circuit configuration. Let i1,
i2, and i3 be the currents through circuit elements 1, 2, and 3 respectively. Nodes A
and B each join exactly two circuit elements, as they lie in between circuit elements
1 and 2, and circuit elements 2 and 3 respectively. According to KCL, we have at
node A a current of i1−i2 = 0, so i1 = i2. At node B, we have i2−i3 = 0, so i2 = i3.
Thus, we note that circuit elements in series must all have the same current. We
cannot have circuits that violate KCL. We can distinguish circuit elements that are
in series by examining all connection points (nodes), and identifying those where
only two circuit elements are joined.

Kirchhoff’s Voltage Law (KVL) states that the algebraic sum of all voltages
around a loop must be zero. This law derives from conservation of energy. We
consider circuit elements in a closed loop, where a loop is a closed path starting at
a node and finishing back at the same node. We similarly need a consistent way to
sum voltages. Around the loop, if we pass a circuit element from + to −, then we
add V . If we pass a circuit element from − to +, then we subtract V . Circuits that
violate KVL have voltages around a loop that do not sum to zero.

For instance, consider a closed loop where the current travels from − to + across
circuit element A and B, and then from + to − across circuit element C. Applying
KVL to this loop, we need −VA − VB + VC = 0. This can be understood through
relating KVL with power and energy, since there must be at all times an energy
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balance (generated must equal absorbed). Hence at any time, the net power must
be zero. Thus, we can consider circuit elements A, B, and C as having power −VAi,
−VBi, and VCi respectively using passive reference convention. −VAi−VBi+VCi = 0,
or i(−VA−VB+VC) = 0. Assuming that i 6= 0, this means that −VA−VB+VC = 0,
which is KVL.

5 January 18, 2017

5.1 Kirchhoff’s Laws Cont’d

Parallel circuits are such that circuit elements in parallel have the same voltage.
For instance, consider a circuit with circuit elements A, B, and C in parallel, with
+ and − for each in the same direction. We can then consider the loops that result
when we compare these parallel elements. Around loop 1, we have −VA + VB = 0,
so

VA = VB.

Around loop 2, we have −VB + VC = 0, so

VB = VC .

Therefore, we have
VA = VB = VC

Example. Consider the circuit with circuit elements A, B, C, and D, where the
first two circuit elements are in parallel with C and D (which are in series with
each other). iA flows upwards, iB flows downwards, iC flows upwards, and iD flows
downwards. VA, VB and VC goes from + to − along with the direction of their
current, whereas VD goes from + to − against the direction of its current direc-
tion. Determine the circuit elements in series and the circuit elements in parallel.
Determine iC in terms of iD. Lastly, given that iA = 3 and iC = 1, find iB and iD.

We note that only C and D are in series, since there is nothing also that joins
where they join. That is, there is nothing else connected since the current cannot
split at any point along the connection. Only A and B are in parallel, since there is
nothing separating A and B, which are on separate paths each closed by two nodes.
We note that they are not in parallel with either C or D, since they would either
be separated by D or C in the respective cases. Since C and D are in series, they
must have identical currents. Since iD is in the opposite direction to iC , we have
iC = −iD. To determine iB, we apply KCL where iA + iC − iB = 0. Thus,

iB = iA + iC = 3A+ 1A = 4A.

As we have noted before, iC = −iD, so

iD = −iC = −1A.
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Example. For the following circuit, let V0 = 100V , and find the total power in the
circuit using KVL and KCL. Let there be an unknown current ig pointing downwards
for this independent current source, followed by a voltage from − to + at 80V . This
is in parallel with an independent current source of 4A pointing upwards, with a
current i∆ and a voltage source from + to − of 80V . We also have in parallel a
voltage controlled voltage source V0 from − to + with the current pointing upwards
of 2i∆

We need to find all the voltages and currents. We first apply KCL at the location
on top at node A, where the parallel paths meet. We note that

i∆ + 2i∆ − ig = 0.

We know that i∆ = 4A, so we can isolate ig and find that 4A+ 2× 4A− ig = 0, so

ig = 12A.

We can now redraw with our own labels for loops and unknown voltages. Let
the leftmost loop be loop 1, and the rightmost be loop 2. The voltage across the
independent current source of 12A is labelled V12 from + to − in the direction of the
current, and the voltage across the the independent current source of 4A is labelled
V4 from − to +. Since we know all the currents, we now use this to find the unknown
voltages V12 and V4. We first apply KVL around the rightmost loop to find that
when we consider voltages across + to − as a positive voltage, with − to + indicate
a negative voltage, we obtain −V4 + 80V + 100V = 0, so

V4 = 180V.

Now applying KVL to loop 1, we obtain V4 + 80V − V12 − 80V = 0, so

V12 = 180V.

With the currents and voltages known, we can now determine the power using
passive reference convention. For the 12A and 4A current sources, we have 2160W
and −720W respectively. For the independent voltage source from − to +, we obtain
−960W , whereas the voltage source from + to − has 320W . Lastly, the dependent
source has −800W . If we sum the total power in the circuit, we note that it equals
0W . That is, there is an energy balance!

6 January 20, 2017

6.1 Resistive Circuits

KVL, KCL, and Ohm’s Law give us all the tools we need to begin circuit analysis.
We will now consider resistances in series and in parallel.
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First we consider resistance in series. Consider an independent voltage source
from − to + in the direction of current i. Along this series circuit is R1, R2, and
R3 resistors with voltages from + to − of V1, V2, and V3 respectively. By KVL, we
now have

−V + V1 + V2 + V3 = 0.

We recall from Ohm’s Law that for a current i across a resistor with voltage from
+ to −, we have V = iR. Thus, the expression can be rewritten as

−V + iR1 + 1R2 + 1R3 = 0.

In other words, we can isolate V and factor out i to get

V = i (R1 +R2 +R3) .

We note then that we can replace the resistors with a single equivalent resistance
Req, where

Req = R1 +R2 +R3.

Therefore, resistance in series add.
Now, we consider resistance in parallel. Suppose we have a parallel circuit with

voltage source from − to + in the direction of current i. Along parallel paths, we
have resistors R1, R2, and R3 with currents i1, i2, and i3 respectively with a common
voltage V from + to −. Then, we consider the common node and apply KCL to
find that

i− i1 − i2 − i3 = 0.

By applying Ohm’s Law, we can rewrite this as

i− V

R1
− V

R2
− V

R3
= 0.

Therefore, solving for i by factoring out V , we obtain

i = V

(
1

R1
+

1

R2
+

1

R3

)
= V (C1 + C2 + C3)

Therefore, conductances in parallel add. In terms of voltage, this can be expressed
as

V = i

(
1

R1
+

1

R2
+

1

R3

)−1

.
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A very common resistor configuration consists of two resistors in parallel. The
total resistance is therefore

Req =

(
1

R1
+

1

R2

)−1

=
1

1
R1

+ 1
R2

=
R1R2

R1 +R2

Example. Find a single equivalent resistance for a circuit with a 15Ω and 5Ω re-
sistor in series. The circuit branches into two parallel paths, one with a 30Ω and
10Ω resistor in series, and the other path with a 40Ω resistor.

We note that we have two set of resistors in series. We can add these resistances,
so we have 20Ω and 40Ω. We now evaluate the resistance of the two split paths by
considering them in parallel. We apply the common expression of Req = R1R2

R1+R2

to obtain 20Ω. Since the result is now in series with the other 20Ω resistance, we
simply add to obtain a final resistance of

Req = 20Ω + 20Ω = 40Ω.

7 January 23, 2017

7.1 Circuit Analysis Using Series-Parallel Equivalents

Circuit Analysis is a procedure for determining all voltages and currents in every
circuit element. We may employ the above simple resistor equivalents to analyze a
circuit.

Example. Consider a circuit with an independent voltage source of 80V from − to
+, with a current i. This is met with a 60Ω resistor, followed by a 40Ω resistor on
a parallel branch, and a 10Ω and 30Ω resistor on another parallel branch. Find the
power in each of the circuit elements.

We first combine resistances. Since the 10Ω and 30Ω resistor are on the same
branch, we can add the resistances to obtain 40Ω. Since this is in parallel with the
other 40Ω resistor, we apply the expression for resistance in parallel to obtain 20Ω.
This is now in series with the 60Ω resistor, so we add them to get a total resistance
of 80V . Since V = iR, we can isolate for current to obtain

i =
V

R

=
80V

80Ω
= 1A
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We can now reconstruct the original circuit and determine the voltage across each
individual resistor. We first split back into the configuration with the 60Ω and 20Ω
resistors (the 20Ω resistor is a combination of three resistors). Since V = iR, we
have 60V and 20V respectively. We can check from KVL that this is correct since

−80V + 60V + 20V = 0.

We now split the 20Ω resistor into the remaining resistors. We note that the current
splits off into two paths. Thus, we find the currents by once again applying the
known voltage of 20Ω to each resistance. We find that for both paths, since the net
resistance is 40Ω, 20V

40Ω = 0.5A. We can check KCL at the node where the current
splits and note that this is correct since

1A− 0.5A− 0.5A = 0.

Now, we once again determine the voltage across each resistor. Over the 40Ω resistor
with 0.5A we have the same 20V , across the 10Ω resistor with 0.5A we have 5V , and
across the 30Ω resistor with 0.5A we have 15V . We determine the power across each
circuit element by considering all resistors use power, while the source generates the
power. Thus, over the source we have −80W , over the first 60Ω resistor we have
i2R = (1A)2(60Ω) = 60W , over the 40Ω resistor we have 10W , over the 10Ω resistor
we have 2.5W , and over the 30Ω resistor we have 7.5W . Note the energy balance
since

−80W + 60W + 10W + 2.5W + 7.5W = 0.

Later, we will use well established systemic methods to do analysis:

• Node-Voltage Method

• Mesh-Current Method

• Thevenin Equivalents

• Superposition

7.2 Other Simple Resistor Circuits - Voltage and Current Dividers

In a series connection of resistors, the total applied voltage divides among them.
We have Req = R1 +R2 +R3, so

i =
V

Req
=

V

R1 +R2 +R3
.

The individual voltages are therefore V1 = iR1, V2 = iR2, and V3 = iR3. For R1

then, we have

V1 =

(
R1

R1 +R2 +R3

)
V,
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where the portion of the total resistance of R1 is the same as the portion of V1 of
the total voltage. The results are similarly defined for R2 and R3.

In a parallel connection of resistors, the total applied current divides among
them. We have

Req =

(
1

R1
+

1

R2

)−1

=
R1R2

R1 +R2
,

so

V = i

(
R1R2

R1 +R2

)
.

The individual currents are therefore

i1 =
V

R1

=
i

R1

(
R1R2

R1 +R2

)
= i

(
R2

R1 +R2

)
where i2 is defined analogously. Note the similarity to the voltage divider, except it
is the resistor from the other branch in the numerator. It is not as straightforward
as voltage division with more than two resistors. When more than two resistors are
in parallel, we may group them.

Example. Find i3 in the circuit with resistor 10Ω, which is in parallel with a 60Ω
and 30Ω resistor with a 10A independent current source.

We recall that we can combine the other two resistors to obtain another resistor
with equal net resistance. That is, 60Ω ∗ 30Ω/(60Ω + 30Ω) = 20Ω. Now, applying
the expression for current dividers, we obtain

i3 = i

(
R2

R1 +R2

)
= 10A ∗ 20Ω

10Ω + 20Ω

= 6.67A

Example. Given an independent current source of 2A, with a 6Ω and 12Ω resistor
in parallel, and a 12Ω and 24Ω resistor in parallel, find V , i1, and V2, where V is
the total voltage generated by the current source, V2 is the voltage across the 12Ω
resistor in parallel with the 6Ωresistor, and i1 is the current across the other 12Ω
resistor.

There are many ways to proceed. For our purposes, we first find the total
resistance connected to the source to find V . We then use voltage division to find V2
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and current division to find i1. We simplify the resistances to obtain the equivalent
net resistance. By considering the parallel resistors, we obtain an 8Ω and 4Ω resistor.
Combining these in series, we get a 12Ω resistor.

V = iR

= (2A)(12Ω)

= 24V

Since circuit elements in parallel have the same voltage, we simply need to find V2

by finding the voltage across the resistance over the net 4Ω resistor.

V2 = iR =

= (2A)(4Ω)

= 8Ω

With the incoming total current of 2A, we can apply current division to find i3

i3 = i

(
R2

R1 +R2

)
= 2A ∗ 24Ω

12Ω + 24Ω

= 1.33A

7.3 Node-Voltage Analysis

The previous method of circuit analysis by series and parallel circuit manipulation
works well for many circuits, but it is an “ad-hoc” method and depends on the
circuit. Furthermore, it does not apply to all circuits. For instance, there are
circuits where nothing is in series and nothing is in parallel. Node-voltage analysis
works for any circuit. Its basic steps are as follows:

1. Identify nodes and decide on a reference node.

2. Apply KCL at nodes to develop a system of equations in terms of node voltages.

3. Solve for node voltages.

8 January 25, 2017

8.1 Node-Voltage Analysis Procedure

Consider a circuit with an independent voltage source Vs. The path breaks off at
node A into two paths, one with resistor R1, and the other with resistor R2. The
second path with R2 continues to separate into two paths at node B, one with R3
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that joins with the path with R1 at node C, and another with resistor R4. The
joined path encounters R5 before joining with the path with R4 at node D, which
then leads to the source.

We first identify the nodes, and decide on a reference node. We label node D as
our reference node that we designate as our zero volt reference. All node voltages
are relative to this reference node. It always simplifies the process by selecting a
node at the side of a voltage source. We label this node with a short line extending
from the node, followed by a long line, a short line, and a dot.

Note that according to this reference node, then node voltage V1 at node A
becomes V1 = Vs. We now apply the second step and perform KCL at the nodes.
So far, we have always labelled branch voltages for circuit elements. For instance,
the current ix across a resistor Rx from + to − has Vx = ixRx, and an independent
voltage source has voltage Vx. However, we now need to consider node voltages, so
we must express Vx and ix in terms of node voltages V1 and V2 with V2 the incoming
voltage and V1 the outgoing voltage.

According to common sense interpretation, voltage V2 appears to be at a higher
potential than V1. Therefore, the branch voltage Vx is the difference between the
higher voltage V2 and the lower voltage V1. That is,

Vx = V2 − V1.

In a KVL interpretation, we arrive at the same result by forming a loop with and
independent voltage source and two resistors with voltage Vz, Vz, and Vy respectively.
We know by KVL that

−Vy − Vx + Vz = 0.

However, we consider the nodes when the independent voltage source and the resistor
meet as V2 and the node where both resistors meet as V1. Now, we have V1 = Vy
and V2 = Vz, so

−V1 − Vx + V2 = 0,

and hence
Vx = V2 − V1.

Since we now have an expression for Vx, we can also derive an expression for current
in terms of node voltages,

ix =
V2 − V1

Rx
.

In our original circuit in consideration, we have V1 at node A, V2 at node B,
and V3 at node C. We can now consider V2 in the original circuit, and write an
expression for current over R2, R3, and R4,

i2 =
V2 − V1

R2
,
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i3 =
V2 − V3

R3
,

i4 =
V2 − 0

R4
.

Remark. Note that by convention, we always point the arrow of the current away
from the node of interest from the resistors from + to −. We have applied KVL and
Ohm’s Law to determine the current term in each case. Noe that the expression for
i4 contains 0 since this is our reference node.

We now sum the currents at node B by KCL to obtain

−
(
V2 − V1

R2

)
−
(
V2 − 0

R4

)
−
(
V2 − V3

R3

)
= 0.

For simplicity, we multiply the entire equation by −1 to obtain(
V2 − V1

R2

)
+

(
V2 − 0

R4

)
+

(
V2 − V3

R3

)
= 0.

Repeating the above procedure for node C with currents once again pointing away
from the node, we obtain(

V3 − V1

R1

)
+

(
V3 − V2

R3

)
+

(
V3 − 0

R5

)
= 0.

Remark. Note the general pattern when writing a node equation with a resistor
branch. The node of interest comes first, followed by a subtraction of the connecting
node, all over the connecting resistance. All terms in this equation represent the
current leaving a node, summed to zero by KCL.

For objects other than resistors connected to the node, we perform different
operations. For an independent current source leaving the node, we use the positive
corresponding current which is a constant (independent current sources entering
the node are therefore given the corresponding negative value). For an independent
voltage source leaving the node from + to −, the current over this source is unknown.
We employ a variation of the current method used.

9 January 27, 2017

9.1 Node-Voltage Analysis Examples

Example. An independent current source of 1A is connected to node A of voltage
V1, splitting off into two paths. The first contains a 5Ω resistor, while the second
contains a 2Ω resistor, which then branches off at node B with voltage V2 into two
paths. The first contains a 10Ω resistor that connects to the path with the 5Ω resistor
at node C with voltage V3. The second path contains a 5Ω resistor that connects
to node D, which is reached by the first branch after it passes a 10V independent
voltage source from + to − and the reference node E. Determine V1, V2, and V3.
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We note that since V3 connects directly to the 10V source, V3 = 10V . We can
then consider node A with V1. By considering the outgoing currents, we obtain

V1 − V2

2Ω
+
V1 − 10V

5Ω
+ (−1A) = 0.

We then consider node B with V2, where we obtain

V2 − V1

2Ω
+
V2 − 10V

10Ω
+
V2 − 0

5Ω
.

From both of these equations, we can solve the following equivalent system

7V1 − 5V2 = 30,

5V1 + 8V2 = 10.

Solving this system, we obtain V1 = 9.35V and V2 = 7.097V .

Example. A 5Ω resistor connects to node A with voltage V1, splitting into two
paths. The first contains a dependent current source of 2ix pointing backwards. The
second path connects to a 2Ω resistor, then to node B of voltage V2, with one path
connecting to a 5Ω resistor with current ix in the forward direction, connecting with
the path of the dependent current source at node C of voltage V3. The second path
connects to a 10V source which connects with the node. Solve for the node voltages.

We once again have 3 nodes, with V2 = 10V since it is connected to the voltage
source. We therefore solve for V1 and V3,

V1 − 0V

5Ω
+
V1 − V2

2Ω
+ (−2ix) = 0,

V3 − 0V

10Ω
+
V3 − V2

5Ω
+ 2ix = 0.

Note that V3−V2
5Ω is simply ix pointing in the other direction. This expression is

therefore equal to−ix. Since we know V2 = 10V , we can simplify the above equations
to obtain

7V1 − 50− 20ix = 0,

3V3 − 20 + 20ix = 0.

We further simplify this by considering that

ix =
V2 − V3

5Ω
.

Thus, we substitute this for ix in the two equations to solve for V1 and V3. Doing
this, we obtain V1 = 1.43V and V3 = 20V .
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10.1 Node-Voltage Analysis Examples Cont’d

Example. Suppose we are give a 1A current source heading up to connect at V1,
where the path splits into 3 paths at a node A with voltage V1. The path leading
back down is connected to a 5Ω resistor, the path going across is connected to a 15Ω
resistor, and the path above connects to a 10Ω resistor with a voltage of Vx from − to
+. The 15Ω resistor path splits into 2 at a node B with voltage V2, with one passing
a 2Vx dependent voltage source from + to −, which then connects to the reference
node, and another path with a 10Ω resistor. This path connects with the path with
other 10Ω resistor at a node C with a voltage of V3, and then splits off into a path
with a 5Ω resistor and one with a 2A current source in the upwards direction.

In this problem, we have three voltages, where we know that V2 = 2Vx since the
path from V2 to reference node has a voltage of 2Vx. At node A, we have

−1A+
V1 − 0V

5
+
V1 − V2

15
+
V1 − V3

10
= 0.

We can rearrange this to sum the conductances connecting each node to obtain

V1

(
1

5
+

1

15
+

1

10

)
− V2

(
1

15

)
− V3

(
1

10

)
− 1 = 0.

At node C, we have

V3 − V1

10
+
V3 − V2

10
+
V3 − 0V

5
− 2 = 0.

Note that we also have the dependence at top, so we find that Vx = V3 − V1. Thus,
since V2 = 2Vx, this becomes V2 = 2(V3−V1). We now solve for the unknown values
of V1 and V3 in the system of equations to obtain

15V2 − 7V3 = 30,

V1 + 2V3 = 20.

We can then conclude that V1 = 5.405V , V3 = 7.297V , and V2 = 2(V3 − V1) =
3.784V .

10.2 Node-Voltage Method - Special Case

There is only one special case that needs to be handled, where we have voltage
sources between nodes where neither node is a reference node. First, the simpler
case occurs when voltage sources are connected directly to other voltage sources.
For instance, consider a reference node connected to 3 paths, each ending at nodes
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with voltages of V1, V2 and V3 respectively. The first two paths have a resistor,
while the third if connected to a voltage source of Va from − to +. Nodes 1 and 2
are connected by a resistor, and nodes 2 and 3 are connected by a voltage source
Vb from + to −. Nodes 1 and 3 are connected by another resistor. We notice that
V3 = Va, and that V2−V3 = Vb, so V2 = Va +Vb. In this case, V2 and V3 are already
known, so we do not need to write equations. We are left with only one unknown
with one equation to solve at node 1.

The trickier case occurs when the sources are not directly connected to each
other. Suppose the same configuration as above, except Vb is now between V2 and
V1 from + to − and V2 and V3 are connected by a resistor instead. While V3 = Va
is the same, we do not know the current i that spans the voltage source from V1 to
V2. Recall in writing node equations that we sum the currents leaving the nodes.
At node 1, we have

V1 − 0V

R1
+
V1 − V3

R2
+ i = 0,

where R1 and R2 are the resistances between the respective nodes. Since i is another
unknown along with V1 and V2, we cannot ignore it. We have to handle the problem
with the concept of a supernode comprised of V1, V2, and the current voltage
source in between. Considering node 2 of the original circuit, we have

V2 − 0V

R3
+
V2 − V3

R4
− i = 0,

where R3 and R4 are the resistances between the respective nodes. We can now
eliminate i by adding the above two equations to obtain

V1 − 0V

R1
+
V1 − V3

R2
+
V2 − 0V

R3
+
V2 − V3

R4
= 0.

This is the supernode equation where the left side of the supernode is the first two
components of the expression, and the right side of the supernode is the remaining
two components of the equation. We also have a dependence equation for the
two nodes within the supernode

V2 − V1 = Vb.

The result is that we still have two equations to describe the nodes V1 and V2: the
supernode and dependence equations.

Example. Suppose we have an independent voltage source of 10V connected to a
reference node on one end, and to node V1 on another. The path splits into one that
connects to V3 with 20Ω, and one that connects to V2 with 10Ω. V2 is connected to
a path with 2Ω to the reference node and to V3 with a voltage source of 5V from
− to +. V3 is connected to the reference node with 5Ω resistance. Solve for node
voltages.
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We form a supernode between V2 and V3. This gives

V2 − V1

10
+
V2 − 0V

2
+
V3 − V1

20
+
V3 − 0V

5
= 0.

From the diagram, we know that V1 = 10V , so we can substitute to obtain the
equation

12V2 + 5V3 = 30.

We also have the dependence equation of

V3 − V2 = 5V.

Simultaneously solving this system of equations gives V2 = 0.294V and V3 = 5.294V .

Example. Suppose we have a circuit with a 2A current source pointing to node B.
This leads to a 2Ω resistor to node A, which connects back to the current source,
and to a 5Ω resistor that leads to node C. This leads to a path with a 8Ω resistor
followed by a 2Ω resistor with voltage Vx from + to − which ends at node A, and
two paths that lead to node D. The first path is across a 20V voltage source from +
to −, and the second path is across a 20Ω resistor. Node D leads to node A through
an independent current source of 1A in the reverse direction. Determine Vx.

We can select different reference nodes. This is summarized below:

1. Choice A: We need equations for B, C, and D, where C and D form a
supernode.

2. Choice B: We need equations for A, C, and D, where C and D form a
supernode.

3. Choice C: We need equations for A and B, where D is fixed at −20V .

4. Choice D: We need equations for A and B, where C is fixed at 20V .

The best choices appear to be C or D. However, we will choose to demonstrate this
example with node A. Solving for node B, we obtain

−2A+
VB − 0V

2Ω
+
VB − VC

5Ω
= 0.

The supernode equation and dependence equation are

VC − VC
5

+
VC − 0V

8 + 2
− 1 = 0,

VC − VD = 20V.

Solving this system of three equations with three unknowns, we find that VB+4.71V ,
VC = 6.47V , and VD = −13.53V . We now use a simple voltage divider to find that

Vx =

(
2

8 + 2

)
VC = 1.294V.
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Example. Suppose that we have a 0.25A to Vc. Vc is connected to reference through
a resistor of 4Ω, to Va with 1Ω, and to Vb with a dependent current source from of
4ix from − to +. Vb is connected to reference with 1Ω, and to Va with a current
source of 2A in the reverse direction. Va is connected to reference through a 4Ω
resistor with current ia, and also through a 4Ω resistor and a 10V voltage source
from + to −. Determine the voltages Va, Vb, and Vc.

At node a, we have

Va − 10V

4
+
Va − 0V

4
+
Va − Vc

1
+ 2A.

At the supernode, we have

VC − 0V

4
− 0.25A+

Vc − Va
1

+
Vb − 0V

1
− 2A,

which reduces to −4Va+4Vb+5Vc = 9. In terms of supernode dependence, we know
that Vb − Vc = 4ix, where ix = Va

4 . Substituting this into the dependence equation,
we obtain

−Va + Vb − VC = 0.

We now have 3 equations to solve for the 3 unknowns. Solving this system of
equations, we find that Vc = 1V , Va = 1V , and Vb = 2V .

Example (A Wheatstone Bridge). Suppose we have a 15V source from − to +
leading to node 1. Here, we split off into a path with a 1200Ω resistor which arrives
at a node labelled a, and then connects to a 300Ω resistor which meets back with the
other path. The other path is a 1000Ω resistor, connected to node b, which passes
a resistance of R4 before meeting the first path at node 2. This then connects back
to the voltage source. A voltage Vab spans from a to b with a labelled as + and b
labelled as −. Assume that this bridge is balanced so that Vab = 0V . Determine R4.
Now, set R4 = 200Ω and connect a and b with a 250Ω resistor. Find the power in
the 250Ω resistor.

This is essentially a pair of voltage dividers. When it is balanced, Vab = 0V , so
a and b have equal voltages. We find the voltage at a is

Va =
300

200 + 1200
∗ 15V = 3V.

This can also be checked using the node-voltage method by letting node 2 be the
reference node. Since the voltages Va = Vb, we find that

Vb =
R4

R4 + 1000
∗ 15V = 3V.
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Solving this gives R4 = 250Ω. For the second problem, we find that at node a, we
have

Va − Vc
1200

+
Va − 0V

300
+
Va − Vb

250
= 0,

where Vc = 15V is the voltage at node 1. At node b, we have

Vb − 15V

1000
+
Vb − 0

200
+
Vb − Va

250
= 0.

Solving this system, we find that Va = 2.817V and Vb = 2.627V . Thus, since
P = V 2

R , we have

P250 =
(Va − Vb)2

250Ω
= 0.144mW.
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11.1 Mesh-Current Method

The mesh-current method is another useful systematic method of circuit analysis.
To use this method, the circuit must be planar with no crossing conductors. Mesh
currents can be imagined as currents circulating in a closed loop or mesh. We
note that mesh currents are different from branch currents in that we use branch
currents to write KCL equations, and mesh currents cannot be measured with an
ammeter. For instance, consider the branch currents i1, i2, and i3, where i1 is the
only one that enters a node, and the other two leave the node. That is,

i1 = i2 + i3.

In mesh currents with ia and ib around the parallel loops around the node, we have

ia = i1,

ib = i2,

i3 = ia − ib.

The mains steps for mesh-current analysis are as follows:

1. Identify meshes.

2. Write the mesh-current equation for each mesh to develop a system of equa-
tions.

3. Solve for mesh equations.
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12.1 Mesh-Current Analysis Procedure

Consider a circuit with a voltage source Va from − to + which leads to two paths at
node A, one with a current source is in the forward direction leading to node C, and
another with resistance R1 to node B. At node B, a resistor R3 connects to node
D while a resistor R2 connects to node C. Node C connects to node D through a
voltage source of Vb from + to −, and node D leads back to the negative end of the
original voltage source.

To identify meshes, we can imagine a circuit as a window with panes. We then
assign a mesh current to each pane. The bottom left mesh current between Va, R1

and R3 is ia, the mesh current between R2, R3, and Vb is ib, and the mesh current
between is, R1, and R2 is ic. We note immediately that is forces the mesh current
ic = is, so ic is known immediately.

Secondly, we form mesh equations in each mesh. We do so by labelling the circuit
to indicate a polarity on each resistor inside each mesh in response to the mesh
current in that mesh. This means that in the direction of each mesh current, any
resistor Rx goes from + to − in the direction of the mesh current being considered.
R1 for instance goes from + to − for both ia and ic when considering their respective
cases, even when they are both approaching the resistor from opposite directions.

For mesh a, voltages around the mesh must sum to zero by KVL. To find the
voltage across resistors R1 and R3, we need to determine the branch currents in
terms of mesh currents. For R1, the branch current i1 is in the direction we chose
for ia, so

i1 = ia − ic.

Since V1 = i1R1, we can substitute the branch current with the mesh currents to
obtain

V1 = (ia − ic)(R1).

Summing the voltages around mesh a, we find that

−Va + (ia − ic)R1 + (ia − ib)R3 = 0.

Similarly, for mesh b, we obtain

Vb + (ib − ia)R3 + (ib − ic)R2 = 0.

Now, we complete the third step by solving the system of two equations in the
two unknowns of ia and ib since we already know ic = is. We can now completely
solve the circuit.

Example. Suppose we have a a loop with a 1Ω resistor on the left, a 2Ω resistor
on top, and a 5V source from + to − on the right. On top, the 2Ω resistor forms a
loop with a 4Ω resistor and a 3Ω resistor. On the right, the 5V source forms a loop
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with the 3Ω resistor and a 1A current source in the reverse direction. These loops
have mesh currents of ia, ib, and ic respectively. Find the power in the 3Ω resistor.

Note that we immediately know that ic = −1A. We now have two unknowns of
ia and ic. For mesh a, we have

(ia)(1Ω) + (ia − ib)(2Ω) + 5V = 0.

Note that ia is alone in the first term since there is only one mesh current in the 1Ω
resistor. This is in contrast to the two mesh currents ia − ib in the 2Ω resistor that
are opposite in direction. Likewise, for mesh b we have

(ib − ia)(2Ω) + (ib)(4Ω) + (ib − ic)(3Ω) = 0.

Solving this system of equations with ic = −1A gives ia = −0.826A and ib =
−2.217A. To determine the power in the 3Ω resistor, we note that the branch
current in the direction of ic is ic − ib = −0.174A. Thus, we find power to be

P = i2R = (−0.174A)2(3Ω) = 0.0908W.

13 February 6, 2017

13.1 Mesh-Current Analysis Examples

Example. Suppose we have a circuit with a dependent voltage source of 10ix from
− to + followed by a 10Ω resistor and a 5Ω resistor in mesh current ia, where ix
is the branch current on the branch with 5Ω in the direction of ia on that branch.
ib consists of the 5Ω resistor with a 20Ω resistor and a 10V source from + to −.
Determine the mesh currents ia and ib.

For mesh a and b, we have

−10ix + 10ia + 5(ia − ib) = 0,

5(ib − ia) + 20ib + 10 = 0.

We can express ix in terms of the mesh currents, so

ix = ia − ib.

Thus, solving this system of equations, we obtain ia = 1
3A, and ib = −1

3A.

Example (Wheatstone Bridge). Suppose we are given a circuit with a 15V inde-
pendent voltage source from − to + in the direction of mesh current ia. This leads
to node A, where we find resistances of 1000Ω, 250Ω, and 1200Ω forming ib between
nodes A, B, and C. This is followed by mesh ic comprised of resistances of 250Ω,
200Ω, and 300Ω between nodes C, B, and D, with node D connecting back to the
voltage source. Note that ia consists of the voltage source, the 1200Ω resistor, and
the 300Ω resistor. Determine the power in the 250Ω resistor.
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We list the mesh current equations for ia, ib, and ic respectively,

−15 + 1200(ia − ib) + 300(ia − ic) = 0,

250(ib − ic) + 1200(ib − ia) + 1000ib = 0,

300(ic − ia) + (250(ic − ib) + 200ic = 0.

Note that similar to the node-voltage method, we can see an important pattern arise
when we rearrange the equations. Consider the rearrangement of the equation for
mesh a:

(1200 + 300)ia − 1200ib − 300ic − 15 = 0.

These terms represent the total resistance around mesh a, the resistance shared with
mesh b, the total resistance shared with mesh c, and the total voltage respectively.
The three equations above form a system with three unknowns. The branch current
in the 250Ω resistor in the direction of ic is given by ic − ib. Thus, since P = i2R,
this becomes

P = (ic − ib)2(250).

13.2 Mesh-Current Analysis - Special Case

As in the node-voltage method, there is a special case that we must handle. This
occurs when there is a branch current source shared between meshes. Suppose we
are given a circuit where R1, R2, and the independent current source isin the forward
direction form ia, the independent current source is in the opposite direction, R4,
and an independent voltage source Vb from + to − forms ib, and R2, R3 and R4

form ic. We note that is is shared by meshes a and b.
In mesh a, we have an unknown voltage V because of the current source, so we

obtain
iaR1 + (ia − ic)R2 + V = 0.

In mesh b, we also have the unknown voltage V ,

−V + (ib − ic)R4 + Vb = 0.

Now, we can add these two equations together to obtain the supermesh equation
by considering a and b a supermesh,

iaR1 + (ia − ic)R2 + (ib − ic)R4 + Vb = 0.

The first two terms represent the side of the supermesh in mesh a, while the last two
terms represent the side of the supermesh in mesh b. We also have a dependence
equation for the two meshes within the supermesh,

ia − ib = is.
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Example. Suppose we have a circuit with a 10V voltage source from − to + with
a 5Ω resistor and a 2Vx current source in the opposite direction forming ia. We
also have this 2Vx current source in the forward direction, with a 10Ω resistor with
a voltage of Vx from + to − and a 5V voltage source from + to − forming ib.
Determine the mesh currents.

We need a supermesh equation and a dependence equation. These are given
respectively as

−10 + 5ia + 10ib + 5 = 0,

ib − ia = 2Vx.

Taking into account the dependent current source, we note that Vx = 10ib. Solving
this system gives ia = 1.118A and ib = −0.0588A.

14 February 8, 2017

14.1 Supermesh Examples

Example. Suppose we have mesh i1 with a 10Ω resistor connected to a 3A current
source in the forward direction, a 5Ω resistor and a 2A current source in the reverse
direction. Mesh i2 consists of the same 2A current source in the forward direction,
a 15Ω resistor, and a 10Ω resistor. Mesh i3 consists of the same 15Ω resistor and
5Ω resistor, along with another 5Ω resistor and a 10Ω voltage source from − to +.
Determine the mesh currents and find the power in the current sources.

We note that we have a supermesh in which i1 = 3A is already known. From
the supermesh dependence equation, we have

i2 − i1 = 2A,

so i2 = 5A. For i3, we have

5i3 − 10V + 15(i3 − i2) + 5(i3 − i1) = 0.

Solving for i3, we obtain i3 = 4A. Now to determine power, we need to find the
unknown voltages V2A and V3A from − to + in the forward direction across the 2A
and 3A current sources respectively.

Remark. ASK HOW THE DIRECTION OF VOLTAGE IS ASSIGNED.

For i2, we have
−V2A + 15(i2 − i3) + 10i2 = 0,

so V2A = 65V . The power in the 2A current source is therefore P = −(65V )(2A) =
−130W . For i1, we have

−V3A + 5(i1 − i3) + V2A + 10(i1) = 0,

so V3A = 90V . Likewise, the power over this current source is P = −(90V )(3A) =
−270W . In both cases, we note that the power is supplied.



Fundamentals of Electrical Circuits and Machines 31

14.2 Summary of Node-Voltage and Mesh-Current Methods

When choosing between Node-Voltage and Mesh-Current methods, we pick the
method with fewer equations. For Node-Voltage, this means looking for nodes with
voltage sources attached. This may eliminate equations through a good choice of ref-
erence node. For Mesh-Current, this means looking for meshes where mesh currents
are fixed in value by current sources. So far, we have covered Circuit Simplifica-
tion, KVL, KCL, Ohm’s Law, Node-Voltage, and Mesh-Current. We now proceed
to cover Thevenin Theorem and the Principle of Superposition.

14.3 Thevenin and Norton Equivalent Circuits

Theorem (Thevenin’s Theorem). A DC electrical network containing voltage sources,
current sources, resistors, and two terminals is electrically equivalent to a network
with one voltage source and one resistor.

This gives us a way to arbitrarily complex “two-terminal” circuits, modeled as
Thevenin voltage and Thevenin resistance, denoted as Vt and Rt respectively.

15 February 10, 2017

15.1 Thevenin Circuits

The voltage-current characteristics are identical at the two terminals. Vt and Rt
are found by considering two operating extremes. In an open circuit comprised
of independent and dependent sources and resistors, the current leading from the
negative to the positive node is i = 0, where VDC is the voltage across. In the
Thevenin equivalent, we can replace the circuit with an independent current source
Vt with a resistor Rt, with a current of i = 0 leading from the negative to the positive
nodes. The voltage across the positive and negative node is Vt, so

Vt = VDC .

In a short circuit comprised of independent and dependent sources and resistors,
the current is isc, which forms a closed loop. The Thevenin equivalent would replace
the sources with an independent voltage source Vt, and the resistors with Rt. Thus,
since V = iR, we can obtain the following expressions for current and resistance,

isc =
Vt
Rt

=
VDC
Rt

,

Rt =
VDC
isc

.

Determining a Thevenin equivalent is two separate analysis problems. We first
need to find Vt, and then find Rt.
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Example. Let there be a node x, which connects to node b, which leads to a 20Ω
resistor before reaching node y. Node b also connects to a 15Ω resistor that leads
to node a. Node a leads to a 10Ω resistor that leads to y, and also leads to a path
with a 5Ω resistor connected to a 10V voltage source from + to − that passes to a
reference node before reaching node y. Find the Thevenin equivalent at terminals x,
y.

We first find Vt, where Vt = VDC . Using the node-voltage method, the open-
circuit voltage will be Vb. Thus, at node a,

Va − 10

5
+
Va
10

+
Va − Vb

15
= 0.

At node b, we have
Vb − Va

15
+
Vb
20

= 0.

Solving this system of equations, we find that Va = 6.087V and Vb = 3.478V . Thus,

Vt = Vb = VDC = 3.478V.

Now, we must find isc. Since there is a parallel combination with the branch con-
taining the 20Ω resistor, we note that the equivalent resistance with the short circuit
is 0Ω. Vb is now connected directly to the reference node, so Vb = 0. Similarly, we
note that i1, the current through the 20Ω resistor is 0, since Vb/20 = 0. Thus, all
current is in isc, with none in the 20Ω resistor. We can thus redraw the circuit. We
have eliminated node b, and are left with a current isc on the branch containing the
15Ω resistor. The remaining parts of the circuit remain unchanged. We find again
the voltage at node A,

Va − 10

5
+
Va
10

+
Va
15

= 0.

Note above that Va/15 is isc. Solving this, we find that Va = 5.455V . Thus, ,

isc =
Va
15

= 0.364A,

Rt =
VDC
isc

=
3.478V

0.364A
= 9.56Ω.

Therefore, the Thevenin equivalent circuit is node y, followed by Vt = 3.478 from −
to +, and a resistance Rt = 9.56Ω that leads to node x.
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16.1 Thevenin Circuit Examples

Example. Let there be a node x which leads to node b. There is a 1A current source
in the reverse direction to node y, and a 5Ω resistor to node y from node b. Node
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b also leads to a 20Ω resistor before reaching node a. Node a is connected to node
y through a 2A current in the reverse direction, and a 10Ω resistor. Node a is also
connected to a 10Ω resistor that leads to a voltage source from + to −, which crosses
a ground before reaching y. Find the Thevenin equivalent.

We will find Vt using the node-voltage method, where Vt = Vb. At node a, we
have

Va − 10

10
− 2 +

Va
10

+
Va − Vb

20
= 0.

At node b, we have
Vb − Va

20
+
Vb
5
− 1 = 0.

Solving this system for Vb gives Vt = Vb = 6.667V . We now need to find isc.
Generally, when we solve for isc by connecting the nodes x and y, we usually treat
this circuit as a new analysis problem. In this case, node b is again attached to the
reference node, so Vb = 0. We once again perform node-voltage on nodes a and b to
find,

Va − 10

10
− 2 +

Va
10

+
Va − 0

20
= 0,

0− Va
20

+
0

5
− 1 + isc = 0.

Note above that the 5Ω resistor is shorted out since there is no current there. We
find that isc = 1.6A by solving the system. Therefore,

Rt =
Vt
isc

=
6.667V

1.6A
= 4.1667Ω.

The Thevenin equivalent is node x connected to a resistor of Rt = 4.1667Ω, followed
by a voltage source from + to − of Vt = 6.667V that ends at node y.

16.2 Shortcut Method for Thevenin Resistance

If a circuit has no dependent sources, then we may use an alternative method to find
Rt by zeroing the sources. We zero their values and use their “effective” resistance.
For instance, suppose we have nodes a and b connected by an independent voltage
source from + to −. If we let V = 0, the source becomes a short circuit. That is, the
effective resistance becomes 0Ω. If we have an independent current source instead
from b to a, we can let i = 0, so the source becomes an open circuit, The effective
resistance would therefore become ∞Ω.

Example. Consider the example directly above. Using Vt = 6.667V , zero the sources
to find Rt.
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We note that we have removed the voltage source and replaced it with a short
circuit, and replaced the two current sources with open circuits. This becomes a
series-parallel combination of resistors. We find that the resistance is Rt = 4.1667Ω
when we resolve this.

The above short-cut method cannot be used if a circuit has dependent sources.
When there are dependent sources, we must determine isc to evaluate Rt = Vt/isc.

Example. Let node x be connected to node a trough a 20Ω resistor. This leads to y
through a path with a 15Ω resistor with current ix, and alternatively on a path with
a 2A independent current source in the reverse direction. Node a is also connected
through a 10Ω resistor and a 5ix voltage source from + to − to ground, which leads
to y. Find the Thevenin equivalent.

First, we find Vt. With the terminals x and y in open circuit, no current flows
through the 20Ω resistor, so Vt = VDC = Va. At node a, node-voltage states that

Va − 5ix
10

− 2 +
Va
15

= 0.

We determine Va by solving the system formed by this equation with the knowledge
that ix = Va/15 from the location of ix. We find that Va = Vt = DDC = 15V . Now,
isc can be found by considering the closed circuit. In this case, isc = Va/20. By
applying node-voltage, we find that

Va − 5ix
10

− 2 +
Va
15

+
Va
20

= 0.

Once again equating this with ix = Va/15, we find that Va = 10.91V in this second
scenario. Therefore,

isc =
Va
20

= 0.545A,

Rt =
Vt
isc

=
15V

0.545A
= 27.5Ω.

The Thevenin equivalent therefore consists of nodes x and y connected by a 27.5Ω
resistor and a 15V voltage source.

Example. Let node x be connected to node c. Node c is connected to node b through
a 15Ω resistor, to a through a 10Ω resistor with voltage Vx from + to −, and to
ground leading to y through a 20Ω resistor. Node b is connected to ground to y
through a 2Vx current source in the reverse direction, and to node a through a 5Ω
resistor. Node a is connected to a 10V voltage source from + to − leading through
ground to y. Find the Thevenin equivalent.

We need to first solve for Vt = VDC = Vc. Not that Va = 10V . Solving for
node-voltage at b and c, we find respectively,

Vb − 10

5
− 2Vx +

Vb − Vc
15

= 0,
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Vc − Vb
15

+
Vc
20

+
Vc − 10

10
= 0.

For the dependent current source, we have

Vx = Va − V − c = 10− Vc.

We find that Vc = Vt = VDC = 9.29V . We now find Rt. Since there is a dependent
source, there are no shortcuts. Thus, the 20Ω resistor is short circuited. There is
no voltage across, so there is also no current through it. Node-voltage through b is,

Vb − 10

5
− 2(Va − Vc) +

Vb − Vc
15

= 0.

However, we have established that Va = 10V and now Vc = 0V . We find that
Vb = 82.5V from this equation. Applying node-voltage to node c,

Vc − Vb
15

+
Vc − 10

10
+ isc = 0.

Substituting Vb = 82.5V and Vc = 0V , we find that isc = 6.5A. Thus,

Rt =
Vt
isc

=
9.29V

6.5A
= 1.43Ω.
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17.1 Thevenin Equivalent Circuits Conclusion

The Norton equivalent circuit provides an alternative form to the Thevenin equiv-
alent. Instead of specifying Rt and Vt in series where

VDC = Vt,

isc =
Vt
Rt
,

the Norton equivalent replaces this with a current source in in parallel with a resis-
tance Rt, where

VDC = inRt = Vt,

isc = in =
Vt
Rt
.

Thevenin and Norton equivalents are related by a source transformation (from
voltage source and series resistance to current source and parallel resistance and
vice versa).

Example. Consider the Thevenin equivalent composed of the node x connected to
a resistance of Rt = 1.43Ω, and a voltage source of Vt = 9.29V leading to node y.
Determine the Norton equivalent.
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The Norton equivalent would have a parallel resistance of Rt = 1.43Ω with a
current source of in = Vt/Rt = 6.5A.

Source transformations act as a handy simplification. Circuits can often be
simplified by source transformations. Whenever we only have a voltage source from
− to + followed by a resistance in series, we can replace it with a current source
equalling i = V/R along with the original resistance in parallel.

Example. Simplify the circuit consisting of node a to ground. There are three paths
from a to ground. The first path is across a 10Ω resistor followed by a 10V voltage
source. The second path is across a 20Ω resistor followed by a 20V voltage source.
The third path is across a 20Ω resistor followed by a 10V voltage source.

We can replace the first two voltage source with a 1A current source, and the
last voltage source with a i = V/R = 10V/20Ω = 0.5A current source. All circuit
elements are now in parallel. We can now determine the total current, which can
be replaced with a 2.5A current source. The resistors in parallel give an effective
resistance of 5Ω. Thus, the final circuit becomes a 2.5A current source connected
to a 5Ω resistor. The voltage across the resistor is

V = iR = 2.5A(5Ω) = 12.5V.

17.2 Principle of Superposition

This is a fundamentally important concept, and often a required method in AC
circuit analysis. We first present this for DC circuits. The method is as follows:

1. Let only one independent source be active.

2. Zero all other independent sources.

3. Determine the response r′ (voltage or current) at the desired location in the
circuit.

4. Repeat one at a time for all other independent sources in the circuit. That is,
find r′′, r′′′, etc.

The principle of superposition states that the total response r (voltage or cur-
rent), is the sum of the individual responses,

r = r′ + r′′ + ...+ r(n).

Remark. Recall that removing current sources leaves an open circuit, while removing
a voltage source leaves a short circuit.

Example. Let there be a 50V voltage source from − to + with current ix. This
splits into two paths at node a with one leading through a 20Ω resistor to node c,
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and another leading through a 12Ω resistor to node b. Node b leads to node c through
an 8Ω resistor that connects to a 30V voltage source from − to + before reaching
the 50V source. Node b also leads to the 50V source through a 20A current source
in the reverse direction. Find ix by superposition.

First, we will consider the 50V source by itself. The 12Ω and 8Ω resistors are
now in series. This is in parallel with a 20Ω resistor, so the effective resistance is
10Ω. Thus,

i′x =
V

R
=

50V

10Ω
= 5A.

Now, considering the 20A source by itself, we note that the endpoints for the 20Ω
resistor at nodes a and c are connected together. This means that Va = Vc, so there
are 0V and 0A across this resistor. Thus, we ignore this 20Ω resistor. We therefore
have a circuit with a 20A current source with resistances of 12Ω and 8Ω. We use
a current divider to find −i1 in the loop with the 12Ω resistor, in order to find i′′x,
since

i′′x = i1 = − 8

8 + 12
∗ 20A = −8A.

Lastly, considering the 30V source by itself, we simply have the 30V source along
with three resistors. The total resistance is 10Ω, so the current is

i′′′x =
V

R
=

30V

10Ω
= 3A.

Thus, by the principle of superposition,

ix = i′x + i′′x + i′′′x

= 5A− 8A+ 3A

= 0A
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18.1 Principle of Superposition Cont’d

With dependent sources, we can only zero independent sources.

Example. SA 10V source from − to + is connected to a 5Ω resistor through a
current ix. This leads to a node that branches to a 10Ω resistor and a 2ix voltage
source from + to −, and also branches to a 2A current source in the reverse direction
with voltage Vx from + to −. Find Vx.

Considering the 2A source alone, we use node voltage at node a where they
connect, and designate the ground as the other end of the 2A source. Thus,

Va
5
− 2 +

Va − 2i′x
10

= 0.
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Additionally, we know that

i′x = −Va
5
,

so solving this gives Va = 5.88V . Thus, V ′x = 5.88V . Now, we consider the 10V
source acting alone. Once again considering node a, we have

Va − 10

5
+
Va − 2i′′x

10
= 0.

We also note that

i′′x =
10− Va

5
.

Solving this system gives Va = V ′′x = 7.06V. Finally, by superposition, we have

Vx = V ′x + V ′′x

= 5.88V + 7.06V

= 12.94V

18.2 Operational Amplifiers

An operational amplifier (op amp) is a complex electronic circuit that im-
plements a voltage-controlled voltage source. There are many important practical
engineering examples including high-speed video amplifiers, microelectronic filters
(telecommunications - huge industry), and instrumentation (precision measuring de-
vices). Invented in 1968, it was originally used to perform operations in “analog”
computers. It was used to perform operations such as addition, integration, and
multiplication on voltages and currents.

Starting at node a, the non-inverting terminal, we reach a resistance Ri, and
then reach node b, the inverting terminal. Node a is +, while node b is −, with a
voltage of Vd across. Now, we have another starting at node c, passing through a
resistor of R0 = 50Ω (not 0Ω), a dependent voltage source of AVd from + to −,
leading to node d. Ri ≈ 1MΩ (not ∞), and A = 100000 (not ∞).

Since the op-amp is an electronic circuit, it requires an external source to operate.
An example would be a ground connection from both end nodes, each leading to
a voltage source from − to +, with one holding a positive voltage, and the other
a negative voltage. The path from the one holding the negative voltage meets the
other path through a triangle from − to +. the triangle has a vertex extending to
a node, and two nodes extending from the side opposite to this vertex.

18.3 Key Properties - Summing-Point Constraints

1. Virtual Short Circuit: For any practical circuit, V0 must be finite-valued,
so ‖V0‖ <∞. For an ideal op-amp, A =∞, and

V0 = AVd.
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Thus, we can rearrange this to find that V0/A = Vd. Since A =∞, this gives

Vd = 0.

That is, there is no voltage across input terminals.

2. Virtual Open Circuit: For an ideal op-amp, Ri =∞.

The circuit symbol for op amps is shown as a two ground connections connected
to independent voltage sources V1 and V2, both from − to +, leading to the op amp.
The path leading to the negative node on the side of the triangle is the inverting
input (-). The path leading to the positive node on the side of the triangle is the
non-inverting input (+). The vertex of the triangle leads to a positive node.
This is not connected to another ground that exists leading from a negative node.
The voltage across this positive and negative node is V0 = A(V1 − V2).

the op amp amplifies the differential input voltage Vd, where

Vd = V1 − V2 → V0 = AVd,

where A is a large number. In the model of the ideal op amp, we have currents ip
and in coming in from the paths containing V1 and V2 respectively. Ideally, inputs
look like open circuits (in = 0, ip = 0). Inside the op amp is a voltage controlled
voltage source where V0 = AVd, connected from ground, leading to − to +, which
leads out the vertex of the triangle.

The main characteristics of an ideal op amp are:

• Infinite input resistance, so in = ip = 0. That is, no current flows into input
terminals.

• A =∞ (A is called the open-loop gain).

• Zero output resistance (the effective resistance of a voltage source is 0Ω).

In summary, the summing-point constraints are:

Vd = 0,

in = ip = 0.

Circuit analysis can then be performed through all methods while observing these
constraints. Op amps are not very useful by themselves; instead we use them in
circuits designed to use these constraints. They are always designed to operate with
“negative feedback” since they would be useless otherwise. In this class, we will
always assume this to be the case. It is these summing-point constraints that given
op amp circuits a wide diversity of important applications.
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18.4 Applying Summing-Point Constraints

Example. Suppose ground is connected to a 5V source with voltage Vp leading to
the non-inverting input. A 2V voltage source is connected from the output vertex,
leading to a voltage Vn into the inverting input. The output splits from leading to
the 2V source to the positive node. Determine V0.

We know that Vp = 5V . Secondly, we know that Vp = Vn = 5V (virtual short
circuit). Thus, since Vn−V0 = 2V , we solve to find that V0 = 3V . Finally, the 1000Ω
resistor has no effect (ideally). The attached resistance does not affect voltage (since
this is a property of an ideal voltage source). The voltage source inside the op-amp
is essentially a dependent voltage source.

Example. Suppose we are given a ground connection leading to non-inverting input
+. A 2mA current source is directed to the inverting input. Before it reaches the
inverting input at −, it splits off into another branch that passes a 1000Ω resistor.
This path joins with the path leading from the op-amp to the positive node of V0,
where the negative node leads to ground. Determine V0.

We note that Vp = 0, and ip = 0. Vn is also equal to 0, and since we assume
infinite input resistance, in = 0. Thus, the current is diverted by the op-amp input
since in = 0 in a virtual open circuit. Thus, across the 1000Ω resistance, we have a
voltage of

V1 = (2mA)(1000Ω) = 2V.

Thus, since V1 = Vn − V0, we have V0 = 0V − 2V = −2V .

19 March 1, 2017

19.1 Op-Amp Circuits Cont’d

There are many interesting and useful circuits that can be made. The simplest of
them are some basic amplifier configurations:

The inverting amplifier is a ground connection to the non-inverting input.
There is a voltage source Vin from − to + leading to a resistance of R1 that leads
to node a. This then leads to the inverting input, with another branch at a leading
to resistance R2 which connects with the path leading from the op-amp. This leads
to the positive terminal of V0, where the negative terminal is connected to ground.
Let us demonstrate an easy way to analyze op-amp problems:

1. All of the interesting properties occur at the op-amp input terminals. This is
almost always our starting point.

2. Node equations at the input terminals tend to greatly simplify the job.
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3. Seldom are we required to write node equations at the op-amp outputs. This
is usually taken care of by the second point above.

With a node equation at a, the summing-point constraints tell us that in = ip = 0,
and Va = 0 since Vd across the input terminals is 0. Thus,

Va − Vin
R1

+
Va − V0

R2
+ in = 0,

where in = 0. Since we already know Va = 0, we find that

V0 = −R2

R1
Vin.

This may also be written as

Av =
V0

Vin
= −R2

R1
,

where A is the closed-loop gain. We did not write an equation at node V0. Doing
so, we obtain

V0 − Va
R2

+ i = 0

where i is the unknown current flowing to the output end of the op-amp. If we
need i, then this is the equation that we use. However, since we were not asked to
determine i, we can omit this step.

The non-inverting input is similar to the inverting amplifier, except that Vin
is moved to the non-inverting (+) terminal. The summing-point constraint tells use
that in = ip = 0, and Va = Vin since both the + and − terminals are at Vin. Thus,
at node a, we have

Va
R1

+
Va − V0

R2
+ in = 0,

where in = 0. Since Va = Vin, we can solve this to find that

V0 =

(
1 +

R2

R1

)
Vin,

which may be written as

Av =
V0

Vin
= 1 +

R2

R1
,

where Av is the closed-loop gain. Note the result is positive (non-inverting ampli-
fier).
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20 March 3, 2017

20.1 Op-Amp circuits Cont’d

Another useful inverting amplifier circuit consists of two voltage sources connected
from ground from − to +, with one being Va and the other Vb. These encounter
resistances of RA and RB respectively before connecting at node a. This leads to
the inverting input with a current in, and also leads to a path that connects to a
resistance Rf before connecting with the output of the op-amp. This leads to the
positive terminal of V0, wth the negative terminal connected to ground. A ground
connection with current ip is connected to the non-inverting input. As before, we
can write a node equation at node a,

Va − VA
RA

+
Va − VB
RB

+ in +
Va − V0

Rf
= 0,

where in = 0. The op-amp imposes Va = 0, in = ip = 0, so we find V0 where

0− VA
RA

+
0− VB
RB

+
0− V0

Rf
= 0,

so

V0 = −
Rf
RA

VA −
Rf
RB

VB.

If we choose RA = RB = R, then we obtain

V0 = −
Rf
R

(VA + VB).

This is in inverting summing amplifier (for instance, this is a part of an audio
mixing circuit.

The differential amplifier is another important and very important configu-
ration. Ground is connected to both V1 and V2. V1 connects to a resistor R3 before
reaching node B. This is connected to ground through a resistor R4 and to the
non-inverting input with ip. V2 is connected to resistance R1 before reaching node
A. Node A leads to the inverting input with in, and also branches to R2 which
reconnects with the output of the op-amp. This leads to the positive terminal of
V0, with the negative terminal leading to ground. This amplifier combines both an
inverting and non-inverting amplifier. From the node equations at A and B,

VA − V2

R1
+
VA − V0

R2
+ in = 0,

VB
R4

+
VB − V1

R3
+ ip = 0,
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where in = ip = 0. From the node equation at B, we find

VB = V1

(
R4

R3 +R4

)
,

which is the voltage divider equation! Since there is no current that can flow because
ip = 0 (virtual open circuit), then R3 and R4 are in series. Now, we substitute
VA = VB, where VB is shown above, we find that

V0 =

(
R1 +R2

R1

)(
R4

R4 +R3

)
V1 −

(
R2

R1

)
V2.

If we let R4 = R2 and R3 = R1, then we obtain

V0 =
R2

R1
(V1 − V2),

which is the amplified voltage difference.

21 March 6, 2017

21.1 Examples of Other Op-Amp Circuits

Example. Consider the a ground connection to the non-inverting input with ip = 0.
A ground connection to Vin from − to + passes through R1 before reaching node a.
This leads to the inverting input with in and to node b through a resistance of R2. At
node b, we have a connection to ground through a resistance of R3, and a connection
to the output of the op-amp through resistance R4. This is connected to the positive
terminal of V0 with the negative terminal connected to ground. Determine V0.

At node a, we have

Va − Vin
R1

+ in +
Va − Vb
R2

= 0,

where in = 0. Since we have Va = 0, we have

−Vin
R1
− Vb
R2

= 0.

For node b, we have
Vb − Va
R2

+
Vb
R3

+
Vb − V0

R4
= 0.

Thus,

V0 = R4

(
1

R2
+

1

R3
+

1

R4

)
Vb.

Substituting the node equations, we get

V0 = −R4R2

R1

(
1

R2
+

1

R3
+

1

R4

)
Vin.
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Example. Consider the differential amplifier with V1 connected to a 1000Ω resistor
before reaching node b, which is connected to ground through a 1000Ω resistor and
leading to the non-inverting input.V2 reaches node a through a 2000Ω resistor leading
to the inverting input. Node a also branches through a 2000Ω resistor to join with
the output of the op-amp. Solve for V0.

First, we start with what we already know for certain. Since ip = 0, the resistors
are in series, so this is a voltage divider at the positive input terminal. Thus,
Va = Vb = V1/2. At node a, we have

Va − V2

2000
+
Va − V0

2000
+ in = 0,

where in = 0. Thus, V0 = 2Va − V2. Substituting the equations, we obtain V0 =
V1 − V2.

Example. Suppose we have a ground connection to Vin from − to + leading to a
4000Ω resistance to node a. Node a connects to the inverting input terminal and
also through a 500Ω resistor to node b. Node b is connected from the output of the
op-amp, and is also connected to node c through a 1000Ω resistor. Node c connects
to the non-inverting input and to ground connected to Vin through a 4000Ω resistor.
Find Va.

As always, we first consider what happens at the input terminals. At node a,

Va − Vin
4000

+ in +
Va − Vb

500
= 0,

where in = 0. From the summing point constraints, we know that Va = Vc. Thus,
we have two unknowns. At node c, we have

Vc − Vb
1000

+ ip +
Vc

4000
= 0,

where ip = 0. We solve these equations to get Va = −Vin. Notice that we did not
have to write an equation at node b. This op-amp circuit is emulating a negative
resistance! Consider that Va = −Vin, so

i =
Vin − (−Vin)

4000
=

2Vin
4000

.

Thus, resistance is

R =
Va
i

= −Vin
i

= − Vin
2Vin
4000

= −2000Ω.

Example. Consider the following two op-amp problem. We are presented a 5V
source from − to + from ground through a 20kΩ resistor to node d. This is also
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connected to a 10kΩ resistance from ground, and also leads to the non-inverting
input. The output leads to V0 and also through a 100kΩ resistor to node c. The
inverting input connection is attached to node a. Node c is attached to the inverting
input of the second op-amp, and is also connected to node b through a 40kΩ resistor.
Node b is also connected to the output of the second op-amp and leads to a through a
10kΩ resistor. Node a is connected through a 20kΩ resistor to a 1V source from +
to − leading to ground. The non-inverting input of the second op-amp is connected
to ground. Determine V0.

On the first op-amp, in1 = 0, so we have a simple voltage divider. Thus

Vd =
10

10 + 20
∗ 5 =

5

3
V.

We note that this must also be the voltage at a. Additionally, we know that Vc = 0V
since it is the inverting terminal while the non-inverting terminal of the second op-
amp has 0V . We now solve a node equation at node a,

Va − 1

20
+ in1 +

Va − Vb
10

= 0,

where in1 = 0. Since we know that Va = 5
3V , we determine that Vb = 2V . We

consider the last point of interest of the input terminals at node c,

Vc − V0

100
+
Vc − Vb

40
+ in2 = 0,

where in2 = 0. With Vb = 2V and Vc = 0V , we find that V0 = −5V .

21.2 Input Resistance of Op-Amp Circuits

Consider an inverting amplifier. What want to determine the resistance seen by
the source Vin. We recall that Va = 0 due to the virtual short circuit. The current
through the source and resistance is

i1 =
Vin
R1

,

so the source sees a resistance of R1. Now, consider the non-inverting amplifier. We
have ip = 0, so

Rin =
Vin
ip

=∞.

But this is an open circuit!
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21.3 Another Application of Op-Amps - Comparators

We have shown that for an inverting amplifier,

V0 = −R2

R1
Vin

with a closed loop gain of

Av = −R2

R1
.

Resistor R2 is a critical component here, since if provides the required negative
feedback to allow this circuit to operate. Also recall that the op-amp itself requires
an external power source to operate. Thus, with a ground connection to both −15V
and 15V from − to +, both leading to opposite sides of an op-amp, these external
power sources ensure that V0 can be any voltage in the range of −15V ≤ V0 ≤ 15.
Now, suppose thatR2 is not there. We are now running the op-amp open loop. Using
the ideal model, this becomes a ground connection to Vi to a resistance leading to
the negative terminal, and a ground connection leading to the positive terminal of
Vd. This is expressed as a ground connection to a dependent voltage source from
− to + of AVd leading to the positive terminal, with a ground connection to the
negative terminal of V0. Since we have Vd = −Vin, then

V0 = −Avin,

where A is the open loop gain which is a large number (ideally infinite). We have
two cases:

Vin < 0, V0 = +[huge number],

Vin > 0, V0 = −[huge number].

Here, the [huge number] is limited by the external power source, so

Vin < 0, V0 = +15V,

Vin > 0, V0 = −15V.

This behaviour makes the op-amp a very useful voltage comparator.

22 March 8, 2017

22.1 Inductors and Capacitors

So far, we have considered the basic circuit elements of sources and resistors. Induc-
tors and capacitors are dependent on electromagnetic fields. Capacitors are from
the separation of charge that produces an electric field. Inductors are from the
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motion of charge that produces a magnetic field. Unlike resistors, these devices can
store energy and return the stored energy (they are not producers of energy).

The capacitor is represented by the circuit symbol of two lines placed perpen-
dicular to the circuit separating the conductor, optionally with a C. Like all circuit
elements, the capacitor has its own important voltage-current relationship. For a
current passing through the capacitor with a voltage from + to −, we have

i = C
dV

dt
,

where V is the voltage in Volts (V ), i is the current in Amps (A), t is the time in
seconds (s), and C is the capacitance in Farads (F ).

The capacitor has constant voltage across the terminals that results in zero
current flow. That is, the current looks like an open circuit. That is,

dV

dt
= 0

when V is constant in the above expression. Furthermore, voltage cannot change
instantaneously, since current would be infinite. We can manipulate the capacitance
expression to find capacitor voltage in terms of current:

V (t) =
1

C

∫ t

t0

i(t)dt+ V (t0),

where it is usually assumed that t0 = 0.

Example. Plot voltage over time across a capacitor C through which a current i is
flowing from + to − across the circuit element.

The voltage over time V (t) would increase from V (0) as time increases, with the
slope equal to i

C .

22.2 Power and Energy in the Capacitor

We again use the passive reference convention. When current is in the same direction
as a voltage drop, P = V i. This is then expressed as

P = V

(
C

dV

dt

)
,

or as

P = i

(
1

C

∫ t

0
i(t)dt+ V (0)

)
.

For energy, we recall that P = dW
dt , so solving with integration, we obtain

W =
CV 2

2
,

where W is energy in Joules.
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22.3 Capacitances in Series and Parallel

Applying KCL, we note that

i = i1 + i2 + i3

= C1
dV

dt
+ C2

dV

dt
+ C3

dV

dt

= (C1 + C2 + C3)
dV

dt

= Ceq
dV

dt

Thus, capacitances in parallel add since

Ceq = C1 + C2 + C3.

23 March 10, 2017

23.1 Capacitances in Series and Parallel Cont’d

In series, we apply KVL to obtain

V = V1 + V2 + V3

=
1

C1

∫ t

0
i(x)dx+

1

C2

∫ t

0
i(x)dx+

1

C3

∫ t

0
i(x)dx

=
1

Ceq

∫ t

0
i(x)dx

Thus, capacitances in parallel are like parallel resistors since

1

Ceq
=

1

C1
+

1

C2
+

1

C3
.

Example. Given a capacitor, find the voltage for a given current waveform. Assume
that there is no initial charge on the capacitor. A current i(t) passes a capacitor
with voltage V (t) from + to − where C = 500µF = 5 ∗ 10−4F . i(t) is 20mA from
0 to 2, is 0mA from 2 to 3, and is −20mA from 3 to 5.

For a capacitor, we recall that

i(t) = C
dV (t)

dt
,

and

V (t) =
1

C

∫ t

0
i(x)dx+ V (0),
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where V (0) = 0. For the time 0 ≤ t ≤ 2,

V (t) =
1

5 ∗ 10−4

∫ t

0

(
20 ∗ 10−3

)
dx

=
20 ∗ 10−3x

5 ∗ 10−4

∣∣∣t
0

= 40t

For the time 2 < t ≤ 3,

V (t) =
1

C

∫ t

2
i(x)dx+ V (2)

=
1

C

∫ t

2
0dx+ V (2)

= V (2)

= 80V

For the time 3 < t ≤ 5,

V (t) =
1

C

∫ t

3
i(x)dx+ V (3)

= −20 ∗ 10−3x

5 ∗ 10−4

∣∣∣t
3

+ 80

= −40(t− 3) + 80

= −40t+ 200

We can then sketch this on a graph of V (t) and t where the slope from 0 to 2 is 40,
the slope from 2 to 3 is 0, and the slope from 3 to 5 is -40. At the last interval for
t > 5, we have i(t) = 0, so V (t) = V (5) = 0. Now, with the waveform for current
and voltage, we can determine the waveform for power by multiplying P = V i.
Thus, the capacitor begins absorbing energy before giving it back. We recall that
energy

W =
1

2
CV 2.

23.2 Inductors

The circuit symbol for the inductor is curls within the conductor with the circuit
parameter for inductance L underneath. The voltage-current relationship for an
inductor L with a voltage V through which a current flows from + to − is given by

V = L
di

dt
,
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where V is the voltage in Volts (V ), i is the current in Amperes (A), t is the time
in seconds (s), and L is the inductance in Henrys (H).

For an inductor, a constant value of current causes zero voltage drop, so the
inductor behaves like a short circuit. This is because

di

dt
= 0

when i is constant. Furthermore, current cannot change instantaneously, since this
would produce infinite voltage. We can manipulate the formula to find the current
through the inductor in terms of voltage,

i(t) =
1

L

∫ t

t0

V (t)dt+ i(t0).

As before, we usually have t0 = 0.

23.3 Power and Energy in the Inductor

When current is in the same direction as a voltage drop, P = V i. This is then
expressed as

P = Li
di

dt
.

For energy, we recall that P = dW
dt , so solving with integration, we obtain

W =
Li2

2
,

where W is energy in Joules.

23.4 Inductors in Series and Parallel

Applying KCL, we note that In series, we apply KVL to obtain

V = V1 + V2 + V3

= L1
di

dt
+ L2

di

dt
+ L3

di

dt

= (L1 + L2 + L3)
di

dt

Thus, inductances in series add since

Leq = L1 + L2 + L3.
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In parallel, we apply KCL to obtain

i = i1 + i2 + i3

=
1

L1

∫ t

0
V dx+

1

L2

∫ t

0
V dx+

1

L3

∫ t

0
V dx

=

(
1

L1
+

1

L2
+

1

L3

)∫ t

0
V dx

Thus, inductances in parallel are like parallel resistances since

1

Leq
=

1

L1
+

1

L2
+

1

L3
.

Example. Let an inductor of 2H have a voltage V (t) with a current i(t) flowing
from + to −. The waveform of i(t) to t starts from 0 and reaches 3 at 0.1s, then
reaches 0 at 0.2, −3 at 0.3, and 0 at 0.4. Given this inductor with i(t), find V (t),
P (t), and W (t).

For the inductor, we recall that

V (t) = L
di(t)

dt
.

For the interval 0 < t ≤ 0.1,

V (t) = L
di(t)

dt

= 2

(
3

0.1

)
= 60V

For the interval 0.1 < t ≤ 0.3,

V (t) = L
di(t)

dt

= 2

(
−6

0.2

)
= −60V

For the interval 0.3 < t ≤ 0.4,

V (t) = L
di(t)

dt

= 2

(
3

0.1

)
= 60V
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We now sketch the V (t) and t graph. P = V i, so we multiply both graphs to obtain
the P (t) and t graph. For the W (t) and t graph, we recall that W = Li2/2. Plotting
this using the graphs, we note that it is never negative, meaning that it is never
producing energy.

23.5 Steady State Sinusoidal Analysis

So far, we have considered circuits in which sources are DC. We now investigate
circuits where sources deliver sinusoidal (AC) currents and voltages. The methods
of analysis are identical, but the arithmetic changes from real to complex.

23.6 Sinusoidal Currents and Voltages

Let V (t) = Vm cos(ωt+ θ), where Vm is the peak value, ω is the angular frequency
measured in radians/sec, and θ is the phase angle measured in radians. This can
be plotted on a V (t) and t graph, where Vm is the highest point, and θ is the angle
which the maximum height at Vm is displaced on the x axis towards the right (the
graph is shifted to the right by θ). The sinusoid is periodic with period T . We have
one complete period when the angle increases by 2π. We note then that

ωt|t=T = 2π

ωT = 2π

T =
2π

ω

Frequency is defined as the number of complete periods (cycles) per second, so

f =
1

T
,

where f is the frequency in Hertz (Hz). We also have

ω =
2π

T
=⇒ ω = 2πf,

in radians/second. By convention, we use cosine and not sine. They are related by

sin(ωt) = cos(ωt− π/2)

= cos(ωt− 90◦)

We say that sin(ωt) has a phase angle of −90◦.

23.7 Root-Mean-Square Values

We often express voltages and current in terms of their peak values Vm and im,
but also in terms of their root-mean-square (rms) values. Consisder power in a
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resistor over one period of the waveforms. Instantaneous power is

P (t) = V (t)i(t) =
V 2(t)

R
.

The energy over one period is

ET =

∫ T

0
P (t)dt.

An important measure is the average power over one period,

Pavg =
ET
T

=
1

T

∫ T

0
P (t)dt

=
1

T

∫ T

0

V 2(t)

R
dt

This can be expressed as

Pavg =

(√
1
T

∫ T
0 V 2(t)dt

)2

R
=
V 2
rms

R
,

where the square root is the “root”, the V 2 is the square, and the means is the
term under the radical. RMS values are sometimes called effective values. In
the real world, AC voltages are specified in rms, not peak (for instance, household
voltages are 120V ). Power is also the average power, not instantaneous power
(for instance, a 100W light bulb uses 100W of average power).

23.8 Relating to DC Circuits

V (t) = Vm cos(ωt+ θ),

where ω = 0, θ = 0, so
V (t) = Vm.

Also,
V (t) = Vrms = Vm,

i(t) = Irms = Im,

P (t) = Pavg.

For sinusoidal voltages and currents, peaks and rms values are not equal. It can be
shown that the Sinusoidal RMS Value is

Vrms =
Vm√

2
.
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The voltage in your home is Vrms = 120V . Since ω = 2πf = 2π ∗ 60Hz, this
means that

V (t) = 120
√

2 cos(ωt+ θ)

= 169.7 cos(120πt+ θ)

Example. Let V (t) = 10 sin(1000πt + 30◦). Express this as a cosine, give angular
frequency, frequency in Hz, the rms voltage, and the average power in a 10Ω resistor.

We have

V (t) = 10 sin(1000πt+ 30◦)

= 10 cos(1000πt+ 30◦ + 90◦)

Thus, the angular frequency is ω = 1000π radians/second, and the frequency in
Hertz is f = ω/(2π) = 500Hz. The rms voltage is Vrms = Vm/

√
2 = 10V/

√
2 =

7.071V . The average power is therefore Pavg = V 2
rms/R = 50V/10Ω = 5W . We can

also sketch the instantaneous power where

P (t) =
V 2(t)

R
=

100

10
cos2(1000πt− 60◦).

We can now use the identity cos2(x) = 1
2(1 + cos(2x)) to rewrite this as

P (t) = 5 + 5 cos(2000πt− 120◦).

This can then be sketched on a P (t) and t graph where Pavg is shown by a translation
of 5 units up, and 10 is the maximum height of the waveform.

24 March 15, 2017

24.1 Phasors

When dealing with sinusoidal voltages and currents, we need a convenient way to
add them to satisfy KCL and KVL. Consider a circuit consisting of a voltage source
V (t) from − to + in the direction of current i(t). It encounters circuit elements with
voltages V1(t), V2(t), and V3(t) respectively from + to −. Let V1(t) = 10 cos(ωt),
V2(t) = 5 cos(ωt − 30◦), and V3(t) = 5 cos(ωt + 90◦). Find V (t) = Vm cos(ωt + θ).
KVL must be satisfied by this circuit over all time, so

−V (t) + V1(t) + V2(t) + V3(t) = 0

This means that

V (t) = 10 cos(ωt) + 5 cos(ωt− 30◦) + 5 cos(ωt+ 90◦).
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We need to manipulate this to the correct form. To accomplish this, we instead
express voltages and currents in terms of phasors. Let V1(t) = V1 cos(ωt + θ1).
We note that ω is usually fixed in value throughout the circuit analysis problem.
We have a pair of independent parameters describing the voltage, where V1 is the
magnitude (amplitude) and θ1 is the phase angle. The basic idea behind phasors is
that we represent this as a vector on a plane, then add the vector lengths. Consider
the following example of phasor representation:

Va(t) = Va cos(ωt+ θa) implies that V̄a has a magnitude of Va and a phase angle
of θa. Vb(t) = Vb sin(ωt+ θb) is the same as Vb cos(ωt+ θb − 90◦). This implies that
V̄b has a magnitude of Vb and a phase angle of θb − 90◦. Similarly, for a current of
ic(t) = Ic cos(ωt+ θc), this implies that Īc has a magnitude of Ic and a phase angle
of θc.

24.2 Complex Numbers Review

Remark. The following section is just a basic review of complex numbers. This
section is included for completion only.

To manipulate phasors, we need to make use of complex numbers. Complex
numbers involve imaginary numbers. Since i represents currents, we shall denote
the imaginary number as

j =
√
−1.

For a complex number, it is composed of a real part and an imaginary part. This can
be plotted on a graph where the y axis represents the imaginary part and the x axis
represents the real part of the number. Out number x = 2+j4 for instance, would be
represented as a point that is 2 units on the real axis and 4 units on the imaginary
axis. x is therefore a point on the complex plane. The complex conjugate of
a complex number consists of the real part of the original number along with the
negative of the imaginary part. That is, the sign on the imaginary part is flipped.
We can convert between the rectangular and polar forms of complex numbers. The
rectangular form is what has been shown, while the polar form consists of a scalar
M and an angle θ that the complex number forms on the complex plane.

To convert between polar in terms of M and θ, and rectangular in terms of a+jb,
we note that,

M =
√
a2 + b2,

θ = tan−1

(
b

a

)
,

a = M cos(θ),

b = M sin(θ).

Complex arithmetic must be done in rectangular form. Multiplication and division
can be done in either form. In rectangular form, multiplication can be performed
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as one would normally with variables. It is important to remember that j2 = −1.
In division, we multiply the numerator and denominator by the complex conjugate
in order to simplify. In polar form, we multiply by multiplying the magnitudes
M = M1·M2, and adding the angles θ = θ1+θ2. To divide, we divide the magnitudes
M = M1/M2 and subtract the angles θ = θ1 − θ2.

The key to phasors is the use of Euler’s identity,

ejθ = cos(θ) + j sin(θ).

Multiplying both sides by M , we obtain

Mejθ = M cos(θ) + jM sin(θ),

where the left side is the complex exponential (another way of expressing M with
θ), and the right side is the rectangular form.

Example. Determine the polar and rectangular forms of x = 10ej30◦.

We note that the polar form is simply a magnitude of M with an angle of 30◦.
To compute the rectangular form, we use Euler’s identity,

x = 10ej30◦

= 10 cos(30◦) + 10j sin(30◦)

= 8.66 + 5j

24.3 KVL and KCL Using Phasors

Our reason for using phasors in this way is because it is simpler to use complex
exponentials than trigonometric identities. The key is to express cosines as complex
exponentials using Euler’s identity,

cos(x) = Re
(
ejx
)
.

In our original KVL example, we had

V (t) = 10 cos(ωt) + 5 cos(ωt− 30◦) + 5 cos(ωt+ 90◦).
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Now, we can equivalently express this as

V (t) = V1(t) + V2(t) + V3(t)

= Re
(
10ejωt

)
+ Re

(
5ej(ωt−30◦)

)
+ Re

(
5ej(ωt+90◦)

)
= Re

(
10ejωt

)
+ Re

(
5ejωte−j30◦

)
+ Re

(
5ejωtej90◦

)
= Re

(
10ejωt + 5ejωte−j30◦ + 5ejωtej90◦

)
= Re

((
10 + 5e−j30◦ + 5ej90◦

)
ejωt

)
= Re

(
(10 + (4.33− 2.5j) + 5j) ejωt

)
= Re

(
(14.33 + 2.5j)ejωt

)
= Re

((
14.54ej9.90◦

)
ejωt

)
= Re

(
14.54ej(ωt+9.90◦)

)
= 14.54 cos (ωt+ 9.90◦)

We have added the three complex constant (phasors) inside the brackets separate
from ejωt in Step 5 to determine the voltage.

24.4 Summary of Phasor Summation Method

First, we express the cosine functions as phasors. We then add the phasors. After-
wards, we convert the result back into a cosine function.

Example. Determine V (t) = V1(t) + V2(t) and draw the phasor diagram when
V1(t) = 5 sin (ωt+ 45◦) and V2(t) = 10 cos (ωt+ 90◦).

The “Time-domain” representation (cosine function) of V1(t) = 5 cos (ωt+ 45◦ − 90◦) =
5 cos (ωt− 45◦), while the time domain representation of V2(t) is as given. In pha-
sor notation, this becomes M1 = 5, θ1 = −45◦ and M2 = 10, θ2 = 90◦ respectively.
V = V1 + V2. Thus,

V1 = 5 cos (−45◦) + j5 sin (−45◦)

= 3.54− 3.54j

V2 = 10 cos (90◦) + j10 sin (90◦)

= 0 + 10j

Thus, converting back to polar, we have V = 3.54 + (10− 3.54)j = 3.54 + 6.46j, so
we obtain

M =
√

3.542 + 6.462 = 7.37.
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θ = tan−1

(
6.46

3.54

)
= 61.28◦.

Convertint back to the time-domain expression,

V (t) = 7.37 cos (ωt+ 61.28◦) .

A common misconception is that V = 3.54 + 6.46j means that the voltage is a
complex number. However, the voltage is not a complex number. The voltage is a
real-valued cosine with a magnitude of 7.37 and a plane angle of 61.28◦.

25 March 20, 2017

25.1 Phase Relationship Between Sinusoids

Let V1(t) = 10 cos (ωt+ 45◦), so V1 composed of M1 and θ1 is M1 = 10 and θ1 = 45◦,
and let V2(t) = 8 cos (ωt− 45◦), so V2 composed of M2 and θ2 is M2 = 8 and
θ2 = −45◦. We say that V1(t) is 90◦ higher in phase than V2(t), and therefore V1(t)
leads V2(t) by 90◦. Likewise, V2(t) lags V1(t) by 90◦. On a graph, we see this since
the top of V1(t) occurs before V2(t) by a 90◦ separation on the horizontal.

Example. Consider the phasor diagram where V1 has a magnitude of 7 at 135◦, V2

has a magnitude of 10 at 30◦, and V3 has a magnitude of 8 at 90◦. Let f = 100Hz.
Express each phasor voltage in the time domain as Vm cos (ωt+ θ).

We note that we always represent angles as the angular distance from the positive
real axis. Since ω = 2πf , with f known, we solve to find that ω = 200π radians per
second. Thus,

V1(t) = 7 cos (200πt+ 135◦) ,

V2(t) = 10 cos (200πt+ 30◦) ,

V3(t) = 8 cos (200πt+ 90◦) .

We note that V1(t) leads V2(t) by 105◦ and leads V3 by 45◦. V3(t) leads V2(t) by 60◦

and lags V1(t) by 45◦.

25.2 Complex Impendances

Now, we need to revisit the voltage-current relationship for resistors, capacitors, and
inductors when voltages and currents are sinusoidal.

For the inductor, we have

VL(t) = L
diL(t)

dt
.
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Since we have iL(t) = Im cos(ωt+ θ), the voltage will be

VL(t) = LIm
d

dt
[cos(ωt+ θ)]

= −ωLIm sin(ωt+ θ)

= −ωLIm cos (ωt+ θ − 90◦)

= ωLIm cos (ωt+ θ + 90◦)

Expressed in phasor form, iL(t) = Im cos(ωt + θ) becomes IL with M = Im at
θ degrees. On the other hand, VL(t) = ωLIm cos (ωt+ θ + 90◦) becomes V L with
M = ωLIm at θ + 90◦ degrees. Through manipulation of the equation by factoring
out IL and using Euler’s identity, we find that

V L = jωL · IL,

where the term jωL is the inductor impedance ZL. Thus, the impedance of an
inductor in Ohms is also equal to M = ωL at 90◦. We now have a phasor equivalent
of Ohm’s law, since

V L = ZLIL.

Note that the voltage leads the current by 90◦. That is, V L is 90◦ higher in phase
than IL.

For the capacitor, we have

iC(t) = C
dVC(t)

dt
.

By the same analysis, we may write

V C = ZCIC ,

where ZC is the capacitor impedance given by

ZC =
1

jωC
,

which can also be expressed as M = 1
ωC at −90◦. Note that voltage lags current by

90◦. That is, V C is 90◦ less in phase than IC .
For the resistor, there is nothing new, since

V R = RIR,

where R is a real-valued constant (resistance). Furthermore, V R and IR are exactly
in phase.
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25.3 Summary of Impedances

1. Inductor:
V L = ZLIL,

ZL = jωL.

2. Capacitor:
V C = ZCIC ,

ZC =
1

jωC
.

3. Resistor:
V R = RIR,

ZR = R.

25.4 Circuit Analysis With Phasors and Complex Impedances

KVL and KCL must always be satisfied, whether it is AC or DC. Thus, the voltages
around the loop must equal 0, and the currents entering a node must equal 0. For
sinusoidal AC circuits, we express KVL and KCL in terms of phasors. That is,

V 1 + V 2 + V 3 = 0,

I1 + I2 + I3 = 0.

We also use the phasor representation of voltage-current relationships, so

V = ZI,

where Z is the complex impedance of an inductor, capacitor, or resistor. The anal-
ysis procedure that we follow is

• Use phasor for voltages and currents.

• Use complex impedance Z.

• Perform circuit analysis as usual.

Example (Complex Voltage Divider). A circuit consists of a voltage source V (t)
from − to +, which passes a 10Ω resistor before reaching a 500µF capacitor and a
100mH inductor. The voltage across the inductor from + to − is VL(t). V (t) =
10 cos(100t). Find VL(t).
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Like resistors in series, impedances add. Thus, we need to find the impedances
of everything using ω = 100 radians per second. The voltage V (t) is V with a
magnitude of M = 10 at 0◦. We already know the impedance of the resistor, since
it is the same. So, we solve for the impedances of the capacitor and inductor, noting
that 1

j = −j,

ZC =
1

jωC
=

1

j(100) (500 · 10−6)
= −20jΩ,

ZL = jωL = j(100)(0.1) = 10jΩ.

Thus, since V = 10, we have

I =
V

ZR + ZC + ZL

=
10

10− 20j + 10j

=
10

10− 10j

=
10

10− 10j
· 10 + 10j

10 + 10j

=
100 + 100j

100− 100j + 100j − 100j2

=
100 + 100j

200
= 0.5 + 0.5j

Now, we can determine V L, since V L = ZLI = 10j ·(0.5+0.5j) = −5+5j. Expressed
in polar form, VL has M = 5

√
2 and θ = 135◦. Thus,

VL(t) = 5
√

2 cos (100t+ 135◦) .

26 March 22, 2017

26.1 Complex Impedance Examples

Example. Suppose a 10 cos(50t) voltage source connected to ground from − to +
is connected to a 1000µF capacitor that reaches node a. This connects to ground
through a 10Ω resistor, and to a 400mH inductor to node b. Node b is connected to
ground through a 5 sin(50t current source in the reverse direction. Determine Va(t)
and Vb(t).

In terms of complex impedances, we have

ZC =
1

jωc
=

1

j(50) (1000 ∗ 10−6)
= −20jΩ,
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ZL = jωL = j(50)
(
400 ∗ 10−3

)
= 20jΩ,

ZR = 10Ω.

Now, the voltage expressed in phasor form has M = 10 and θ = 0. the current
source in phasor form has M = 5 and θ = −90. It is thus given by −5j. Now, we
write node-voltage equations,

V a − 10

−20j
+
V a

10
+
V a − V b

20j
= 0,

V b − V a

20j
− (−5j) = 0.

Solving these two equations, we find that V a = 90
−1+2j = −18−36j and V b = 82−36j.

The phasor equation of V a therefore has M =
√

182 + 362 = 40.25 with an angle
of θ = −

(
180◦ − tan−1

(
36
18

))
= − (180◦ − 63.4◦) = −116.6◦. Similarly, the phasor

equation of V b has M =
√

822 + 362 = 89.55 and θ = tan−1
(
−36

82

)
= −23.7◦.

Writing this in the time-domain representation, we obtain

Va(t) = 40.25 cos (50t− 116.6◦) ,

Vb(t) = 89.55 cos (50t− 23.7◦) .

Example. Consider the circuit composed of a 0.01 cos
(
104t

)
current source that

connects to a 1KΩ resistor, an inductor with a resistance of 200jΩ, and a capacitor
with a resistance of −200jΩ, all in parallel. Find the phasor voltage V and all
phasor currents.

First note that I has M = 0.01 at an angle of 0◦. We could start by finding the
total impedance Zeq, starting the the parallel branches of ZC and ZL. We find that

ZC,L =
(200j) · (−200j)

200j − 200j
=∞.

the inductive impedance cancels the capacitive impedance! This is called reso-
nance. Thus, we write node equations at a,

−0.01 +
V

1000
+

V

200j
+

V

−200j
= 0.

Solving this, we find that V = 10V . Then,

IR =
10

1000
= 0.01A,

IL
10

200j
= −0.05jA,

IC =
10

−200j
= 0.05jA,

where IR + IL + IC = 0.01. Note that IC and IL cancel.
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27.1 Thevenin Equivalent AC Circuits

As for DC circuits, we can reduce an AC circuit to a Thevenin or Norton equivalent.
This is accomplished in the same way as for DC circuits, with the difference being
that Rt is replaced with Zt.

Example. Let V (t) = 100 cos (50t+ 45◦) and i(t) = 5 cos(50t). The circuit is
composed of a voltage source connected to ground at node b. From node a, we
encounter a 10Ω resistor before reaching the voltage source from + to −. Other
parallel paths to node b from a include a path with a 10Ωresistor, a path with a
current source i(t) in the reverse direction, and a path with a 0.1H inductor and a
2000µF capacitor. Find the Thevenin equivalent.

The phasor representation of the current source is I = 5 at an angle of 0, while
the phasor representation of the voltage source is V = 10 at an angle of 45◦. In
terms of phasors and complex impedances,

ZL = jωL = j(50)(0.1) = 5jΩ,

ZC =
1

jωC
=

1

j(50) (2000 ∗ 10−6)
= −10jΩ.

Applying a single node equation at node a, we have

V A − 100 (cos (45◦) + j sin (45◦))

10
+

V A

5j − 10j
− 5 +

V A

10
= 0.

Solving this, we obtain

V A =
120.7 + 70.1j

2 + 2j
.

We solve this by converting to polar form to make the division easier. We find that
V t = V A = 49.4 at −14.4◦. Thus, V (t) = 49.4 cos (50t− 14.4◦) . Now, we find Zt.
For this example, we have no dependent sources! Thus, we zero the independent
sources. This leaves us with two 10Ω resistor and a −5jΩ resistor, all in parallel.
Thus,

Zt =

(
1

10
− 1

5j
+

1

10

)−1

=

(
1

5
− 1

5j

)−1

=

(
−5 + 5j

25j

)−1

=
125− 125j

50

=
5

2
− 5

2
jΩ
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Not ethat this is a resistor and a capacitor in series, since Zt can be expressed as
a 2.5Ω resistor and a capacitor with a resistance of −2.5jΩ (the negative indicates
capacitance).

28 March 17, 2017

28.1 Frequency Dependent Circuits

The frequency-dependent nature of inductors and capacitors paves way for a wide
number of applications of AC circuits. Consider the circuit consisting of a voltage
source V (t) from − to + that leads to an inductor L, and a resistor with voltage
VR(t) from + to −. Let V (t) be as follows:

V (t) = Vm cos (ωt+ 0◦) ,

where Vm is the constant value and ω is the angular frequency (kept as a variable).
In terms of phasors and complex impedances, we replace V (t) with Vm at an angle
of 0, L with the complex impedance ZL = jωL, and R with V R. This is a simple
voltage divider, since

V R =
R

R+ jωL
· Vm,

where ZL is frequency-dependent. We may write this as

V R =
1

1 + jω
(
L
R

) · Vm.
Here, the magnitude and phase of V R are frequency-dependent. This dependence
is called frequency response.

In the time domain,
VR(t) = VR cos (ωt+ θR) ,

where the amplitude ‖VR‖ is at frequency ω and θR is the phase of VR(t) at ω. The
amplitude is

‖V R‖ = VR

=

∣∣∣∣∣ 1

1 + j
(
ωL
R

) · Vm
∣∣∣∣∣

=
Vm∣∣1 + jω
(
L
R

)∣∣
=

Vm√(
ωL
R

)2
+ 12
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We can graph VR against ω. Doing so, we find that when ω is 0, we have Vm. As ω
increases however, VR drops.

This is called a lowpass filter. Sinusoids with low frequencies come through
strongly, while higher frequencies come through at a reduced amplitude. An ideal
lowpass filer has the frequency response that resembles a square in that VR is Vm
until a certain cutoff frequency ωc at which VR drops to 0. This can be compared
to our graph, where the L-R circuit causes a less drastic descent to 0 at increased
ω. For the ideal filter,

VR =

{
Vm, 0 ≤ ω ≤ ωc
0, ω > ωc

We usually define the cutoff frequency as the frequency at which VR =
(

1√
2

)
· Vm.

By equating this with the expression for our L-R circuit, we find that

ωcL

R
= 1.

Thus, ωc = R/L radians per second and fc = ωc/2π.
There are many other extremely useful filter circuits. One such bandstop filter

circuit that exploits the series cancellation of impedances is composed of V in from
− to + connected to a resistance R. This leads to a node which is connected to
a capacitor with Zc = 1/jωC = −j/ωC, and an inductor ZL = jωL, where the
voltage across both the capacitor and inductor from + to − is V out. This leads
back to the voltage source. The nodes where V out ends and begins lead to two other
nodes. Thus, we find that

V out =
ZL + ZC

ZL + ZC + ZR
· V in,

where the numerator will cancel at the frequency where ZL = −ZC , so V out = 0.
Plotting V out against ω, we note that at ω = 0, we are at Vm. The graph then
drops to 0 when ωL = 1/ωC (resonance) before rising again with increasing ω. This
is called a notch filter and has many important applications. For instance, the
“hum” in an audio system is due to a 60Hz power source.

29 March 29, 2017

29.1 Superposition in AC Circuits

As with other methods of AC circuit analysis, the procedure is identical to that of
DC circuits. However, we use complex algebra! This method is the only way to
analyze circuits with sources of different frequencies.
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29.2 Power in AC Circuits

Consider an arbitrary complex impedance consisting of a voltage source from − to
+ of Vm at an angle of 0, through which a current of I flows to a resistor R and a
complex impedance of jX before returning to the negative terminal of the voltage
source. The load resistance is

Z = R+ jX,

so that
‖Z‖ =

√
R2 +X2,

θ = tan−1

(
X

R

)
.

In the above relations, R is the resistive part, while X is the reactive part. We now
have current phasor I, which is

I =
Vm 0◦

‖Z‖ θ
=

Vm
‖Z‖ −θ

.

Thus, we let Im be the magnitude, so

I = Im −θ.

We will now investigate four cases:

1. Resistor

2. Inductor

3. Capacitor

4. General Load

In a Purely Resistive Load, X = 0. We have

V (t) = Vm cos(ωt),

i(t) = Im cos(ωt).

Power is V (t)i(t), so P (t) = VmIm cos2(ωt). Using the identity cos2(x) = 1
2 (1 + cos(2x)),

we obtain

P (t) =
1

2
VmIm (1 + cos(2ωt)) .

We note that if we plot P (t) against t, we will obtain a sinusoidal wave with the
maximum at VmIm, the minimum at 0, and Pavg = 1

2VmIm. The graph is always
positive, as the resistor only absorbs power.

In a Purely Inductive Load, R = 0 and X > 0. For the inductor, Z = jωL =
ωL 90◦, so θ = 90◦. Thus,

V (t) = Vm cos(ωt),
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i(t) = Im cos (ωt− 90◦) = Im sin(ωt).

Power is VmIm cos(ωt) sin(ωt), but we use the identity cos(x) sin(x) = 1
2 sin(2x) to

obtain

P (t) =
VmIm

2
sin(2ωt).

Plotting P (t) against t, we find that the maximum occurs at VmIm
2 , and the minimum

occurs at −VmIm
2 . The positive region indicates that energy is being absorbed, while

the negative region indicates that energy is being given back. This is called reactive
power - the average is zero.

In a Purely Capacitive Load, R = 0 and X < 0. We have Z = 1
jωC =

1
ωC −90◦, so θ = −90◦. Thus,

V (t) = Vm cos(ωt),

i(t) = Im cos(ωt+ 90◦) = −Im sin(ωt).

Power is therefore

P (t) = −VmIm
2

sin(2ωt).

This is also reactive power. For the capacitor and inductor, no average power is
consumed or generated.

For a General Load where R 6= 0 and X 6= 0, we allow for both resistance and
capacitance or inductance. Thus, we allow θ in the range

−90◦ ≤ θ ≤ 90◦,

where the lower limit of −90◦ is purely capacitive and the upper limit pf 90◦ is
purely inductive. We have

V (t) = Vm cos(ωt),

i(t) = Im cos(ωt− θ),

P (t) = Vm cos(ωt)Im cos(ωt− θ),

which we can manipulate to obtain

P (t) =
VmIm

2
cos(θ) (1 + cos(2ωt)) +

VmIm
2

sin(θ) sin(2ωt).

Since the average of cos(2ωt) and VmIm
2 sin(θ) sin(2ωt) are both 0, this means that

the average power is

P = Pavg =
VmIm

2
cos(θ).

This is the power in Watts, absorbed by the resistive component of the total
impedance. We recall that Vrms = V√

2
and Irms = I√

2
to obtain

P = VrmsIrms cos(θ),
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where P is the average, or real, power. Note that for a resistor when θ = 0◦, the
cos term cancels out. This term is very important, and is referred to as the power
factor, where

PF = cos(θ).

In the general case, the power angle is

θ = θV − θI .

We often state the PF and specify whether the current leads of lags voltage.

30 March 31, 2017

30.1 Power in AC Circuits Example

Example. A load has a leading power factor of 0.707. Determine whether this is
capacitive or inductive, and the power angle.

A leading PF means that the current is leading (has a higher phase than) the
voltage. Reviewing what we know, we have Z = R+Xj = ‖Z‖ θ. Let

V = Vm θV ,

I = Im θI ,

where we are given θI > θV since the current leads the voltage. We know that
I = V /Z, so Z = V /I. Thus,

Z =
Vm θV
Im θI

= ‖Z‖ θV − θI

We note that the power angle θV − θI is negative because θI > θV . What we now
know is that since the power factor PF = cos(θ) = 0.707, and θ < 0, this means
that the power angle θ = −45◦. This suggests that Z = R+Xj, where X < 0. The
load therefore has a capacitance of ZC = −j/ωC.

Average reactive power is always zero. However, its instantaneous value is
sinusoidal with peak value Q, where it is given by

Q = VrmsIrms sin(θ).

This is flowing back and forth between the inductors/capacitors and the source.
This might be a problem in large scale systems. Power companies may penalize you
for reactive power. The units for reactive power are Volt-Amperes-Reactive,
VARs.
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Apparent power is a measure of the total power (average and reactive), and
is given by

Papp = VrmsIrms.

The units of apparent power are Volt-Amps, VAs. For instance, a 5kW load, a
10kV A load and a 15kV AR load means that we have P = 5000W , VrmsIrms =
10000V A, and Q = 15000V AR respectively.

30.2 The Power Triangle and Other Power Relationships

Each of P , Q, and apparent power can be represented in a triangle. In a right trian-
gle, P is the adjacent side, Q is the opposite side, and VrmsIrms is the hypotenuse.
The angle θ between the adjacent and the hypotenuse is the power angle, where θ
is positive if inductive, and negative if capacitive.

It is easy to calculate P , Q, and apparent power directly from impedance. We
have Z = ‖Z‖ θ = R + Xj. Additionally, we recall that cos(θ) = R/‖Z‖ and
sin(θ) = X/‖Z‖. We also have

P =
VmIm

2
cos(θ) =

VmIm
2
· R

‖Z‖
,

Im =
Vm
‖Z‖

.

Thus, substituting Vm, we find that P = I2
mR/2. By applying other known expres-

sions for the variables, we obtain

P = I2
rmsR,

Q = I2
rmsX,

Papp =
√
P 2 +Q2,

where these expression represent the average power in Z, the reactive power in Z,
and the apparent power in Z respectively.

Finally, complex power is defined as

S =
1

3
V I.

Thus, we can expand V and I to obtain

S =
1

2
(Vm θV ) · (Im −θI)

=
1

2
VmIm θV − θI
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where θ = θV −θI is the power angle. Expanding S into rectangular form, we obtain

S =
VmIm

2
cos(θ) + j

VmIm
2

sin(θ)

= P + jQ

The apparent power can then be seen to be the magnitude of the complex power,
as

Papp = ‖S‖ =
√
P 2 +Q2.

Example. We have a circuit with a voltage source of 1414 at an angle of 30◦ from
− to + through which current I passes. This splits off into two parallel paths that
reconnect with the − end of the voltage source. The first path has current IA with
10kV A, PF = 0.5, and is leading. The second path has a current IB with 5kW ,
PF = 0.7, and is lagging. Find I in the example below.

The first load is specified in terms of applied power Papp in kV A, while the second
load is specified in terms of average power P in Watts. Applying the power triangle
to branch A, we have the hypotenuse as 10kV A, with a power factor cos(θA) = 0.5.
We also know that it is leading. Recall that a leading power factor means that the
current leads the voltage. Thus, θI > θV . Thus, θA = θV − θI has a negative angle.
The power angle is therefore given by

θA = −
(
cos−1(0.5)

)
= −60◦.

We can now calculate PA and QA for branch A,

PA = VrmsIrms cos(θA)

= 10000 · 0.5
= 5000W

QA = VrmsIrms sin(θA)

= −10000 · 0.866

= −8.66kV AR

Analogously, we find that θB = cos−1(0.7) = 45.57◦. Hence, with our knowledge of
PB, we can find QB. We note that tan(θB) = QB/PB, so

QB = PB tan(θB)

= 5000 tan (45.57◦)

= 5.101kV AR

The total power in both loads is therefore

P = PA + PB = 5kW + 5kW = 10kW,
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Q = QA +QB = −8.660kV AR+ 5.101kV AR = −3.559kV AR,

S = P + jQ = (10000− j3559)V A.

In polar form, this is
S = 10610 −19.59◦,

where the negative angle indicates that current leads voltage. We know the total
complex power and voltage, so by applying S = 1

2V I, we find that

I =
2S

V

=
2 · 10610 −19.59◦

1414 30◦

= 15.0 −49.59◦

Remark. When the power factor is leading, θI > θV , so the power angle is negative.
When the power factor is lagging, θI < θV , so the power angle is positive.

31 April 3, 2017

31.1 DC Motors

We will now study electric motors and generators. Motors convert electrical energy
to mechanical energy, while generators do the reverse. This is accomplished through
electromechanical conversion.

Motors (and generators) are constructed with two major components, the sta-
tor (stationary part) and the rotor (rotating part), The rotor is connected to a
shaft that connects to a mechanical load. Depending on the machine type, the rotor
and stator contain conductors wired in coils called windings. This produces in-
teracting magnetic fields, thereby producing physical torque. We note that torque
is the twisting force that tends to cause rotation. The stator produces a magnetic
field. This is often produced by the stator’s field windings, or a permanent magnet.
Motors can be found in many places (it constitutes 2/3 of power consumed in North
America):

• Fans and Ventilation.

• Vacuum Cleaners.

• Rock Crushers.

• Trains.

• Disk Drives and Robotic Systems.
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31.2 Operating Characteristics of Motors

Efficiency is a very important motor parameter. We can consider a voltage source
with both ends connected to a motor, providing electrical input power Pin. The
motor rotates the shaft which produces mechanical output power Pout. Efficiency is
defined as

η =
Pout
Pin
· 100%.

For a DC machine, Pin = V i in Watts. Mechanical power output is given by

Pout = Toutωm,

where Tout is the output torque in N ·m, ωm is the angular shaft speed in rads/sec,
and Pout is in Watts. The angular shaft speed can be expressed as

ωm = nm ·
2π

60
,

where nm is the shaft speed in revolutions per minute. Note that 1HP = 746W .

31.3 Speed Regulation

Depending on the motor type, speed may decrease with load. Speed regulation SR
is defined as

SR =
nno−load − nfull−load

nfull−load
· 100%,

where a smaller value is preferred. Values greater than 100% are possible.

Example. Given a DC motor with a 50HP rating, we find from measurements at
the motor that V = 220V , nno−load = 1200rpm, and nfull−load = 1150rpm. Under
a full (rated) load, the power loss is equal to 3350W . At full load, find the efficiency,
speed regulation, and input current.

To find efficiency, the motor is delivery 50HP of power, so Pout = 50 · 746 =
37300W . The total power delivered plus the total lost is Ptotal = 37300 + 3350 =
40650W . Thus, this is the total input power. Efficiency is therefore

η =
Pout
Pin

=
37300

40650
· 100% = 91.76%.

The input current and speed regulation can also be found,

i =
Pin
V

=
40650

220
= 184.77A,

SR =
nno−load − nfull−load

nfull−load
· 100% =

1200− 1150

1150
· 100% = 4.35%.
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32 April 5, 2017

32.1 Electrical Circuit of DC Motors

DC motors can be modeled with two simple circuits. The field consists of a current
IF flowing across a field resistance RF and field windings (inductor) LF , with a
voltage across the entire system being VF from + to −. The armature consists of
a current IA flowing across an armature resistance RA and the shaft with speed ωm
and torque Tm. The voltage across the shaft is EA from + to −, while the voltage
across the entire system including the resistance is VT from + to −. For a rotating
DC machine, we have ωm as the rotational speed in radians per second, and Tm is
the torque in Newton meters.

Since we are operating in DC, the field current reduces to simply an expression
over the resistance (LF acts as a short circuit, so it is not considered). The induced
armature voltage is given by

EA = Kφωm,

where φ is the magnetic flux, and K is a machine constant. The total developed
mechanical torque is

Tdev = Tm = KφIA.

The total developed mechanical power is

Pdev = Tdevωm.

Together, these three equations are the key to analyzing DC motor and generator
circuits.

EA = Kφωm,

Tdev = KφIA,

Pdev = Tdevωm.

We normally consider K and φ together, where Kφ is the machine constant.

32.2 Magnetization Curve

The magnetization curve plots EA against IF . It consists of a linear region where
the two are linearly dependent, until it reaches a particular shaft speed nm. We then
reach magnetic core saturation, where the slope levels out to 0. This is a typical
magnetization curve for a given speed. A point on this curve gives us Kφ. From
this, we can calculate the other values. Note that we may not always obtain the
same curve, but Kφ can almost always be calculated from the information given.

Example. We have a DC motor that obeys the above curve. Additionally, we have
nm = 1500rpm, Pdev = 10HP , IF = 3A, RA = 0.3Ω, and RF = 50Ω. Determine
the developed torque, the armature IA, the applied voltage VT , and the efficiency.
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We can immediately determine the following,

ωmm = nm ·
2π

60
= 157.1rads/s,

Pdev = 10HP · 746 = 7460W,

Tdev =
Pdev
ωm

= 47.49Nm.

We recall that the armature circuit consists of VT attached to RA = 0.3A with a
current IA. This then reaches the motor with an induced armature voltage EA,
where Pdev = EAIA = 7460W . The motor is where the electrical world meets the
mechanical world. Making use of the equation above, we need EA to find IA. From
the given magnetization curve we have

EA = 200V,

IF = 3A,

nm = 1200rpm.

making use of the machine equation for EA, we can rearrange to obtain

Kφ =
EA
ωm

=
200V

1200 · 2π
60

= 1.59.

Our motor is run at nm = 1500rpm, so

EA = Kφωm = 1.59 · 1500 · 2π

60
= 250V.

We can now use the above equation to find

IA =
Pdev
EA

=
7460W

250V
= 29.84A.

Alternatively, we note that we could have used the machine equation for Tdev to find
IA, since

IA =
Tdev
Kφ

=
47.49

1.59
= 29.84A.

The applied voltage VT can then be found by applying KVL, since

−VT + IARA + EA = 0.

Solving this gives VT = (29.84A)(0.3Ω) + 250V = 258.95V . We recall that the total
developed power in the armature was Pdev = 10HP = 7460W . The total input
power is given by the power supplied by VT and the field losses. Thus,

Pin = VT IA + I2
FRF = (258.95)(29.84) + (3)2(50) = 8177.1W.

We can now calculate efficiency,

η =
Pdev
Pin
· 100% =

7460

8177.1
· 100% = 91.2%.
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32.3 Power and Torque: Developed vs. Output

At the mechanical output of the motor, we have electrical power from P + IAEA,
and the developed mechanical power Pdev = P = IAEA and Tdev = Pdev

ωm
= KφIA.

Developed power and torque do not take into account rotational losses such as
friction (bearings) and windage (wind resistance). In a practical motor, we have
rotational losses Prot and Trot. Thus,

Pout = Pdev − Prot,

Tout = Tdev − Trot.

If there are no rotational losses, then Pout = Pdev and Tout = Tdev.

33 April 7, 2017

33.1 Shunt-Connected DC Machines

Suppose we are given a circuit with voltage source VT form − to + with current
IL flowing to node a. Here, the path splits off into a path with a current of IF
through resistors Radj and RF and inductor LF . The other path has a current of
IA through a resistor RA, which then leads to a motor with EA from + to −, ωm
and Tdev. These two paths join together and meet at the negative terminal of the
voltage source.

In the above machine configuration, the field and armature circuits are connected
in parallel. The variable resistor Radj is denoted with a line through a normal resistor
symbol, and is available to adjust the torque-sped characteristic. The total input
power is

Pin = VT IL,

where IL is the total line current. Some of this creates the field. Power that is
absorbed by the field is dissipated as heat,

PF = I2
F (Radj +RF ) =

V 2
T

Radj +RF
.

The armature resistance similarly dissipates power as heat,

PA = I2
ARA =

(VT − EA)2

RA
.

The remaining power is developed power Pdev, where

Pdev + EAIA,

Tdev =
Pdev
ωm

=
EAIA
ωm

.
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Example. Consider a shunt-connected DC machine with VT = 200V , RF = 10Ω,
Radj = 20Ω, and RA = 0.065Ω. This machine has rotational losses (friction) rep-
resented by constant torque Trot = 12Nm (rotational power loss is proportional to
speed, Prot = Trotωm). From power tests on this machine when IF = 10A and
nm = 1200rpm, EA = 300V . Additionally, the total required torque by the mechan-
ical load is Tout = 200Nm. Find the motor speed and efficiency.

In the field, since we are dealing with DC, we have

IF =
300

20 + 10
= 10A.

From the information given at nm = 1200rpm, we know IF = 10A and EA = 300V .
We use the basic machine equations. This gives

Kφ =
EA
ωm

=
300

1200 · 2π
60

= 2.387.

The total torque required by the load is Tout = 200Nm. Adding the rotational
losses, we find

Tdev = Tout + Trot = 200 + 12 = 212Nm.

Our strategy now is to find IA, EA, and then the speed. Making use of the machine
equation,

IA =
Tdev
Kφ

=
212

2.387
= 88.8.

From KVL, we have

EA = VT − IARA = 300− (88.8)(0.065) = 294.2V.

Therefore,

ωm =
EA
Kφ

=
294.2

2.387
= 123.6rad/s,

nm = ωm ·
60

2π
= 1177rpm.

We can then find efficiency after finding the input and output power,

Pout = Toutωm = (200)(123.6) = 24652W,

Pin = VT IL = 300(IF + IA) = 300(10 + 88.8) = 29640W,

η =
Pout
Pin
· 100% =

24652

29640
· 100% = 83.2%.

Example. Suppose fan blades are attached to the shaft of the above motor. This
adds 15Nm of additional torque loss, independent of speed. What is the new speed?
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The total developed torque is now

Tdev = 200 + 12 + 15 = 227Nm,

where 200Nm is from the load, and 27Nm is from rotational losses. The armature
current increases to

IA =
Tdev
Kφ

=
227

2.387
= 95.1

By KVL, we have

EA = VT − IARA = 300− (95.1)(0.065) = 293.82V.

Thus,

ωm =
EA
Kφ

=
293.82

2.387
= 123.09rad/s,

nm = ωm ·
60

2π
= 1175.4rpm.

33.2 Separately Excited DC Machines

This configuration is similar to shunt-connected, except the field and armature have
separate sources. That is, the field circuit consists of a voltage source VF from −
to +, through a resistor RF and inductor LF with a current IF leading back to
the voltage source. The armature circuit consists of VT from − to + with current
IA through resistor RA reaching a motor consuming EA before leading back to the
voltage source.

33.3 Permanent-Magnet DC Motors

This type of motor is similar to separately excited, except the field is produced by
permanent magnets. It is useful in fractional-horsepower applications, such as for
small fans, power windows, windshield wipers, and servos.

33.4 Series-Connected DC Motors

This type of motor consists of the field and armature connected in series. Thus,
instead of splitting into two paths, We encounter VT from − to +, followed by LF ,
RF , RA, and EA from + to −. here, LF and RF constitute the field, while RA and
EA form the armature. In this case, IA = IF . Series-connected motors have high
torque at low speeds. They are suitable for application such as electric automotive
starter motors, electrical drills, screwdrivers, and handheld mixers.

33.5 Torque-Speed Characteristics

All motors are characterized by torque-speed characteristics.
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34 Monday April 10, 2017

34.1 Formulas for Final Exam

A separate formula sheet is not allowed for this course. The following machine
equations and conversions will be given:

Tdev = KφIA,

EA = Kφωm,

P = Tωm,

1HP = 746W,

ωm(rad/s) = nm(rev/min) · 2π(rads/rev) · 1

60
(min/s).

Some things that will not be given but should be remembered are shown below.
For an inductor,

V (t) = L
di(t)

dt
,

ZL = jωL.

For a capacitor,

i(t) = C
dV (t)

dt
,

ZC =
1

jωC
.

For DC and AC power, we follow the passive reference convention. When current
flows from − to + across a circuit element, then P = −V i. When current flows from
+ to − across a circuit element, the P = V i. Thus, P > 0 when it is absorbed, and
P < 0 when it is delivered.

For AC power, P is the power or average power, while Q is the reactive power.
They can be expressed as

P =
V 2
rms

R
= I2

rmsR,

Q =
V 2
rms

X
= I2

rmsX,

where X = ‖ZL‖ = ωL for an inductor, and X = ‖ZC‖ = 1/ωC for a capacitor.
Alternatively, they are given as

P = IrmsVrms cos(θ),

Q = IrmsVrms sin(θ),
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where θ = θV − θI is the power angle. Complex power is given by

S = P + jQ =
1

2
V I.

The power triangle where P is adjacent, Q is opposite, and Papp is the hypotenuse
with an angle of θ between P and Papp can be expressed as

Papp =
√
P 2 +Q2 = ‖S‖.
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